2,001 research outputs found

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Old Techniques for New Join Algorithms: A Case Study in RDF Processing

    Full text link
    Recently there has been significant interest around designing specialized RDF engines, as traditional query processing mechanisms incur orders of magnitude performance gaps on many RDF workloads. At the same time researchers have released new worst-case optimal join algorithms which can be asymptotically better than the join algorithms in traditional engines. In this paper we apply worst-case optimal join algorithms to a standard RDF workload, the LUBM benchmark, for the first time. We do so using two worst-case optimal engines: (1) LogicBlox, a commercial database engine, and (2) EmptyHeaded, our prototype research engine with enhanced worst-case optimal join algorithms. We show that without any added optimizations both LogicBlox and EmptyHeaded outperform two state-of-the-art specialized RDF engines, RDF-3X and TripleBit, by up to 6x on cyclic join queries-the queries where traditional optimizers are suboptimal. On the remaining, less complex queries in the LUBM benchmark, we show that three classic query optimization techniques enable EmptyHeaded to compete with RDF engines, even when there is no asymptotic advantage to the worst-case optimal approach. We validate that our design has merit as EmptyHeaded outperforms MonetDB by three orders of magnitude and LogicBlox by two orders of magnitude, while remaining within an order of magnitude of RDF-3X and TripleBit

    Mapping Large Scale Research Metadata to Linked Data: A Performance Comparison of HBase, CSV and XML

    Full text link
    OpenAIRE, the Open Access Infrastructure for Research in Europe, comprises a database of all EC FP7 and H2020 funded research projects, including metadata of their results (publications and datasets). These data are stored in an HBase NoSQL database, post-processed, and exposed as HTML for human consumption, and as XML through a web service interface. As an intermediate format to facilitate statistical computations, CSV is generated internally. To interlink the OpenAIRE data with related data on the Web, we aim at exporting them as Linked Open Data (LOD). The LOD export is required to integrate into the overall data processing workflow, where derived data are regenerated from the base data every day. We thus faced the challenge of identifying the best-performing conversion approach.We evaluated the performances of creating LOD by a MapReduce job on top of HBase, by mapping the intermediate CSV files, and by mapping the XML output.Comment: Accepted in 0th Metadata and Semantics Research Conferenc
    • …
    corecore