27,981 research outputs found

    The Dichotomy of Conjunctive Queries on Probabilistic Structures

    Full text link
    We show that for every conjunctive query, the complexity of evaluating it on a probabilistic database is either \PTIME or #\P-complete, and we give an algorithm for deciding whether a given conjunctive query is \PTIME or #\P-complete. The dichotomy property is a fundamental result on query evaluation on probabilistic databases and it gives a complete classification of the complexity of conjunctive queries

    Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

    Full text link
    Query evaluation over probabilistic databases is a notoriously intractable problem -- not only in combined complexity, but for many natural queries in data complexity as well. This motivates the study of probabilistic query evaluation through the lens of approximation algorithms, and particularly of combined FPRASes, whose runtime is polynomial in both the query and instance size. In this paper, we focus on tuple-independent probabilistic databases over binary signatures, which can be equivalently viewed as probabilistic graphs. We study in which cases we can devise combined FPRASes for probabilistic query evaluation in this setting. We settle the complexity of this problem for a variety of query and instance classes, by proving both approximability and (conditional) inapproximability results. This allows us to deduce many corollaries of possible independent interest. For example, we show how the results of Arenas et al. on counting fixed-length strings accepted by an NFA imply the existence of an FPRAS for the two-terminal network reliability problem on directed acyclic graphs: this was an open problem until now. We also show that one cannot extend the recent result of van Bremen and Meel that gives a combined FPRAS for self-join-free conjunctive queries of bounded hypertree width on probabilistic databases: neither the bounded-hypertree-width condition nor the self-join-freeness hypothesis can be relaxed. Finally, we complement all our inapproximability results with unconditional lower bounds, showing that DNNF provenance circuits must have at least moderately exponential size in combined complexity.Comment: 19 pages. Submitte

    Probabilistic Query Evaluation with Bag Semantics

    Get PDF
    We initiate the study of probabilistic query evaluation under bag semantics where tuples are allowed to be present with duplicates. We focus on self-join free conjunctive queries, and probabilistic databases where occurrences of different facts are independent, which is the natural generalization of tuple-independent probabilistic databases to the bag semantics setting. For set semantics, the data complexity of this problem is well understood, even for the more general class of unions of conjunctive queries: it is either in polynomial time, or #P-hard, depending on the query (Dalvi & Suciu, JACM 2012). Due to potentially unbounded multiplicities, the bag probabilistic databases we discuss are no longer finite objects, which requires a treatment of representation mechanisms. Moreover, the answer to a Boolean query is a probability distribution over non-negative integers, rather than a probability distribution over {true, false}. Therefore, we discuss two flavors of probabilistic query evaluation: computing expectations of answer tuple multiplicities, and computing the probability that a tuple is contained in the answer at most k times for some parameter k. Subject to mild technical assumptions on the representation systems, it turns out that expectations are easy to compute, even for unions of conjunctive queries. For query answer probabilities, we obtain a dichotomy between solvability in polynomial time and #P-hardness for self-join free conjunctive queries

    Scalable Statistical Modeling and Query Processing over Large Scale Uncertain Databases

    Get PDF
    The past decade has witnessed a large number of novel applications that generate imprecise, uncertain and incomplete data. Examples include monitoring infrastructures such as RFIDs, sensor networks and web-based applications such as information extraction, data integration, social networking and so on. In my dissertation, I addressed several challenges in managing such data and developed algorithms for efficiently executing queries over large volumes of such data. Specifically, I focused on the following challenges. First, for meaningful analysis of such data, we need the ability to remove noise and infer useful information from uncertain data. To address this challenge, I first developed a declarative system for applying dynamic probabilistic models to databases and data streams. The output of such probabilistic modeling is probabilistic data, i.e., data annotated with probabilities of correctness/existence. Often, the data also exhibits strong correlations. Although there is prior work in managing and querying such probabilistic data using probabilistic databases, those approaches largely assume independence and cannot handle probabilistic data with rich correlation structures. Hence, I built a probabilistic database system that can manage large-scale correlations and developed algorithms for efficient query evaluation. Our system allows users to provide uncertain data as input and to specify arbitrary correlations among the entries in the database. In the back end, we represent correlations as a forest of junction trees, an alternative representation for probabilistic graphical models (PGM). We execute queries over the probabilistic database by transforming them into message passing algorithms (inference) over the junction tree. However, traditional algorithms over junction trees typically require accessing the entire tree, even for small queries. Hence, I developed an index data structure over the junction tree called INDSEP that allows us to circumvent this process and thereby scalably evaluate inference queries, aggregation queries and SQL queries over the probabilistic database. Finally, query evaluation in probabilistic databases typically returns output tuples along with their probability values. However, the existing query evaluation model provides very little intuition to the users: for instance, a user might want to know Why is this tuple in my result? or Why does this output tuple have such high probability? or Which are the most influential input tuples for my query ?'' Hence, I designed a query evaluation model, and a suite of algorithms, that provide users with explanations for query results, and enable users to perform sensitivity analysis to better understand the query results

    Model Counting of Query Expressions: Limitations of Propositional Methods

    Full text link
    Query evaluation in tuple-independent probabilistic databases is the problem of computing the probability of an answer to a query given independent probabilities of the individual tuples in a database instance. There are two main approaches to this problem: (1) in `grounded inference' one first obtains the lineage for the query and database instance as a Boolean formula, then performs weighted model counting on the lineage (i.e., computes the probability of the lineage given probabilities of its independent Boolean variables); (2) in methods known as `lifted inference' or `extensional query evaluation', one exploits the high-level structure of the query as a first-order formula. Although it is widely believed that lifted inference is strictly more powerful than grounded inference on the lineage alone, no formal separation has previously been shown for query evaluation. In this paper we show such a formal separation for the first time. We exhibit a class of queries for which model counting can be done in polynomial time using extensional query evaluation, whereas the algorithms used in state-of-the-art exact model counters on their lineages provably require exponential time. Our lower bounds on the running times of these exact model counters follow from new exponential size lower bounds on the kinds of d-DNNF representations of the lineages that these model counters (either explicitly or implicitly) produce. Though some of these queries have been studied before, no non-trivial lower bounds on the sizes of these representations for these queries were previously known.Comment: To appear in International Conference on Database Theory (ICDT) 201

    Approximate Lifted Inference with Probabilistic Databases

    Full text link
    This paper proposes a new approach for approximate evaluation of #P-hard queries with probabilistic databases. In our approach, every query is evaluated entirely in the database engine by evaluating a fixed number of query plans, each providing an upper bound on the true probability, then taking their minimum. We provide an algorithm that takes into account important schema information to enumerate only the minimal necessary plans among all possible plans. Importantly, this algorithm is a strict generalization of all known results of PTIME self-join-free conjunctive queries: A query is safe if and only if our algorithm returns one single plan. We also apply three relational query optimization techniques to evaluate all minimal safe plans very fast. We give a detailed experimental evaluation of our approach and, in the process, provide a new way of thinking about the value of probabilistic methods over non-probabilistic methods for ranking query answers.Comment: 12 pages, 5 figures, pre-print for a paper appearing in VLDB 2015. arXiv admin note: text overlap with arXiv:1310.625

    Learning Tuple Probabilities

    Get PDF
    Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---this is still an under-investigated topic in the context of Probabilistic Databases (PDBs). In this paper, we focus on learning the probability values of base tuples in a PDB from labeled lineage formulas. The resulting learning problem can be viewed as the inverse problem to confidence computations in PDBs: given a set of labeled query answers, learn the probability values of the base tuples, such that the marginal probabilities of the query answers again yield in the assigned probability labels. We analyze the learning problem from a theoretical perspective, cast it into an optimization problem, and provide an algorithm based on stochastic gradient descent. Finally, we conclude by an experimental evaluation on three real-world and one synthetic dataset, thus comparing our approach to various techniques from SRL, reasoning in information extraction, and optimization
    • …
    corecore