22,680 research outputs found

    Search Efficient Binary Network Embedding

    Full text link
    Traditional network embedding primarily focuses on learning a dense vector representation for each node, which encodes network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned dense vector representations are inefficient for large-scale similarity search, which requires to find the nearest neighbor measured by Euclidean distance in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a sparse binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations efficiently through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support much quicker network node search compared to Euclidean distance or other distance measures. Our experiments and comparisons show that BinaryNE not only delivers more than 23 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods

    Toward Word Embedding for Personalized Information Retrieval

    Full text link
    This paper presents preliminary works on using Word Embedding (word2vec) for query expansion in the context of Personalized Information Retrieval. Traditionally, word embeddings are learned on a general corpus, like Wikipedia. In this work we try to personalize the word embeddings learning, by achieving the learning on the user's profile. The word embeddings are then in the same context than the user interests. Our proposal is evaluated on the CLEF Social Book Search 2016 collection. The results obtained show that some efforts should be made in the way to apply Word Embedding in the context of Personalized Information Retrieval

    Target Apps Selection: Towards a Unified Search Framework for Mobile Devices

    Full text link
    With the recent growth of conversational systems and intelligent assistants such as Apple Siri and Google Assistant, mobile devices are becoming even more pervasive in our lives. As a consequence, users are getting engaged with the mobile apps and frequently search for an information need in their apps. However, users cannot search within their apps through their intelligent assistants. This requires a unified mobile search framework that identifies the target app(s) for the user's query, submits the query to the app(s), and presents the results to the user. In this paper, we take the first step forward towards developing unified mobile search. In more detail, we introduce and study the task of target apps selection, which has various potential real-world applications. To this aim, we analyze attributes of search queries as well as user behaviors, while searching with different mobile apps. The analyses are done based on thousands of queries that we collected through crowdsourcing. We finally study the performance of state-of-the-art retrieval models for this task and propose two simple yet effective neural models that significantly outperform the baselines. Our neural approaches are based on learning high-dimensional representations for mobile apps. Our analyses and experiments suggest specific future directions in this research area.Comment: To appear at SIGIR 201

    Scalable Semantic Matching of Queries to Ads in Sponsored Search Advertising

    Full text link
    Sponsored search represents a major source of revenue for web search engines. This popular advertising model brings a unique possibility for advertisers to target users' immediate intent communicated through a search query, usually by displaying their ads alongside organic search results for queries deemed relevant to their products or services. However, due to a large number of unique queries it is challenging for advertisers to identify all such relevant queries. For this reason search engines often provide a service of advanced matching, which automatically finds additional relevant queries for advertisers to bid on. We present a novel advanced matching approach based on the idea of semantic embeddings of queries and ads. The embeddings were learned using a large data set of user search sessions, consisting of search queries, clicked ads and search links, while utilizing contextual information such as dwell time and skipped ads. To address the large-scale nature of our problem, both in terms of data and vocabulary size, we propose a novel distributed algorithm for training of the embeddings. Finally, we present an approach for overcoming a cold-start problem associated with new ads and queries. We report results of editorial evaluation and online tests on actual search traffic. The results show that our approach significantly outperforms baselines in terms of relevance, coverage, and incremental revenue. Lastly, we open-source learned query embeddings to be used by researchers in computational advertising and related fields.Comment: 10 pages, 4 figures, 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa, Ital
    • …
    corecore