30 research outputs found

    An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity

    Full text link
    We study the problem of learning to rank from pairwise preferences, and solve a long-standing open problem that has led to development of many heuristics but no provable results for our particular problem. Given a set VV of nn elements, we wish to linearly order them given pairwise preference labels. A pairwise preference label is obtained as a response, typically from a human, to the question "which if preferred, u or v?fortwoelements for two elements u,v\in V.Weassumepossiblenon−transitivityparadoxeswhichmayarisenaturallyduetohumanmistakesorirrationality.Thegoalistolinearlyordertheelementsfromthemostpreferredtotheleastpreferred,whiledisagreeingwithasfewpairwisepreferencelabelsaspossible.Ourperformanceismeasuredbytwoparameters:Thelossandthequerycomplexity(numberofpairwisepreferencelabelsweobtain).Thisisatypicallearningproblem,withtheexceptionthatthespacefromwhichthepairwisepreferencesisdrawnisfinite,consistingof. We assume possible non-transitivity paradoxes which may arise naturally due to human mistakes or irrationality. The goal is to linearly order the elements from the most preferred to the least preferred, while disagreeing with as few pairwise preference labels as possible. Our performance is measured by two parameters: The loss and the query complexity (number of pairwise preference labels we obtain). This is a typical learning problem, with the exception that the space from which the pairwise preferences is drawn is finite, consisting of {n\choose 2}$ possibilities only. We present an active learning algorithm for this problem, with query bounds significantly beating general (non active) bounds for the same error guarantee, while almost achieving the information theoretical lower bound. Our main construct is a decomposition of the input s.t. (i) each block incurs high loss at optimum, and (ii) the optimal solution respecting the decomposition is not much worse than the true opt. The decomposition is done by adapting a recent result by Kenyon and Schudy for a related combinatorial optimization problem to the query efficient setting. We thus settle an open problem posed by learning-to-rank theoreticians and practitioners: What is a provably correct way to sample preference labels? To further show the power and practicality of our solution, we show how to use it in concert with an SVM relaxation.Comment: Fixed a tiny error in theorem 3.1 statemen

    An Efficient Semi-Streaming PTAS for Tournament Feedback Arc Set with Few Passes

    Get PDF
    We present the first semi-streaming polynomial-time approximation scheme (PTAS) for the minimum feedback arc set problem on directed tournaments in a small number of passes. Namely, we obtain a (1 + ?)-approximation in time O (poly(n) 2^{poly(1/?)}), with p passes, in n^{1+1/p} ? poly((log n)/?) space. The only previous algorithm with this pass/space trade-off gave a 3-approximation (SODA, 2020), and other polynomial-time algorithms which achieved a (1+?)-approximation did so with quadratic memory or with a linear number of passes. We also present a new time/space trade-off for 1-pass algorithms that solve the tournament feedback arc set problem. This problem has several applications in machine learning such as creating linear classifiers and doing Bayesian inference. We also provide several additional algorithms and lower bounds for related streaming problems on directed graphs, which is a largely unexplored territory

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Space-Efficient Algorithms and Verification Schemes for Graph Streams

    Get PDF
    Structured data-sets are often easy to represent using graphs. The prevalence of massive data-sets in the modern world gives rise to big graphs such as web graphs, social networks, biological networks, and citation graphs. Most of these graphs keep growing continuously and pose two major challenges in their processing: (a) it is infeasible to store them entirely in the memory of a regular server, and (b) even if stored entirely, it is incredibly inefficient to reread the whole graph every time a new query appears. Thus, a natural approach for efficiently processing and analyzing such graphs is reading them as a stream of edge insertions and deletions and maintaining a summary that can be (a) stored in affordable memory (significantly smaller than the input size) and (b) used to detect properties of the original graph. In this thesis, we explore the strengths and limitations of such graph streaming algorithms under three main paradigms: classical or standard streaming, adversarially robust streaming, and streaming verification. In the classical streaming model, an algorithm needs to process an adversarially chosen input stream using space sublinear in the input size and return a desired output at the end of the stream. Here, we study a collection of fundamental directed graph problems like reachability, acyclicity testing, and topological sorting. Our investigation reveals that while most problems are provably hard for general digraphs, they admit efficient algorithms for the special and widely-studied subclass of tournament graphs. Further, we exhibit certain problems that become drastically easier when the stream elements arrive in random order rather than adversarial order, as well as problems that do not get much easier even under this relaxation. Furthermore, we study the graph coloring problem in this model and design color-efficient algorithms using novel parameterizations and establish complexity separations between different versions of the problem. The classical streaming setting assumes that the entire input stream is fixed by an adversary before the algorithm reads it. Many randomized algorithms in this setting, however, fail when the stream is extended by an adaptive adversary based on past outputs received. This is the so-called adversarially robust streaming model. We show that graph coloring is significantly harder in the robust setting than in the classical setting, thus establishing the first such separation for a ``natural\u27\u27 problem. We also design a class of efficient robust coloring algorithms using novel techniques. In classical streaming, many important problems turn out to be ``intractable\u27\u27, i.e., provably impossible to solve in sublinear space. It is then natural to consider an enhanced streaming setting where a space-bounded client outsources the computation to a space-unbounded but untrusted cloud service, who replies with the solution and a supporting ``proof\u27\u27 that the client needs to verify. This is called streaming verification or the annotated streaming model. It allows algorithms or verification schemes for the otherwise intractable problems using both space and proof length sublinear in the input size. We devise efficient schemes that improve upon the state of the art for a variety of fundamental graph problems including triangle counting, maximum matching, topological sorting, maximal independent set, graph connectivity, and shortest paths, as well as for computing frequency-based functions such as distinct items and maximum frequency, which have broad applications in graph streaming. Some of our schemes were conjectured to be impossible, while some others attain smooth and optimal tradeoffs between space and communication costs

    Vergleichen und Aggregieren von partiellen Ordnungen

    Get PDF
    Das Vergleichen und Aggregieren von Informationen ist ein zentraler Bereich in der Analyse von Wahlsystemen. In diesen mĂŒssen die verschiedenen Meinungen von WĂ€hlern ĂŒber eine Menge von Kandidaten zu einem möglichst gerechten Wahlergebnis aggregiert werden. In den meisten politischen Wahlen entscheidet sich jeder WĂ€hler durch Ankreuzen fĂŒr einen einzigen Kandidaten. Daneben werden aber auch Rangordnungsprobleme als eine Variante von Wahlsystemen untersucht. Bei diesen bringt jeder WĂ€hler seine Meinung in Form einer totalen Ordnung ĂŒber der Menge der Kandidaten zum Ausdruck, wodurch seine oftmals komplexe Meinung exakter reprĂ€sentiert werden kann als durch die Auswahl eines einzigen, favorisierten Kandidaten. Das Wahlergebnis eines Rangordnungsproblems ist dann eine ebenfalls totale Ordnung der Kandidaten, welche die geringste Distanz zu den Meinungen der WĂ€hler aufweist. Als Distanzmaße zwischen zwei totalen Ordnungen haben sich neben anderen Kendalls Tau-Distanz und Spearmans Footrule-Distanz etabliert. Durch moderne Anwendungsmöglichkeiten von Rangordnungsproblemen im maschinellen Lernen, in der kĂŒnstlichen Intelligenz, in der Bioinformatik und vor allem in verschiedenen Bereichen des World Wide Web rĂŒcken bereits bekannte, jedoch bislang eher wenig studierte Aspekte in den Fokus der Forschung. Zum einen gewinnt die algorithmische KomplexitĂ€t von Rangordnungsproblemen an Bedeutung. Zum anderen existieren in vielen dieser Anwendungen unvollstĂ€ndige „WĂ€hlermeinungen“ mit unentschiedenen oder unvergleichbaren Kandidaten, so dass totale Ordnungen zu deren ReprĂ€sentation nicht lĂ€nger geeignet sind. Die vorliegende Arbeit greift diese beiden Aspekte auf und betrachtet die algorithmische KomplexitĂ€t von Rangordnungsproblemen, in denen WĂ€hlermeinungen anstatt durch totale Ordnungen durch schwache oder partielle Ordnungen reprĂ€sentiert werden. Dazu werden Kendalls Tau-Distanz und Spearmans Footrule-Distanz auf verschiedene nahe liegende Arten verallgemeinert. Es zeigt sich dabei, dass nun bereits die Distanzberechnung zwischen zwei Ordnungen ein algorithmisch komplexes Problem darstellt. So ist die Berechnung der verallgemeinerten Versionen von Kendalls Tau-Distanz oder Spearmans Footrule-Distanz fĂŒr schwache Ordnungen noch effizient möglich. Sobald jedoch partielle Ordnungen betrachtet werden, sind die Probleme NP-vollstĂ€ndig, also vermutlich nicht mehr effizient lösbar. In diesem Fall werden Resultate zur Approximierbarkeit und zur parametrisierten KomplexitĂ€t der Probleme vorgestellt. Auch die KomplexitĂ€t der Rangordnungsprobleme selbst erhöht sich. FĂŒr totale Ordnungen effizient lösbare Varianten werden fĂŒr schwache Ordnungen NP-vollstĂ€ndig, fĂŒr totale Ordnungen NP-vollstĂ€ndige Varianten hingegen liegen fĂŒr partielle Ordnungen teilweise außerhalb der KomplexitĂ€tsklasse NP. Die Arbeit schließt mit einem Ausblick auf offene Problemstellungen

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore