56 research outputs found

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    On relating CTL to Datalog

    Full text link
    CTL is the dominant temporal specification language in practice mainly due to the fact that it admits model checking in linear time. Logic programming and the database query language Datalog are often used as an implementation platform for logic languages. In this paper we present the exact relation between CTL and Datalog and moreover we build on this relation and known efficient algorithms for CTL to obtain efficient algorithms for fragments of stratified Datalog. The contributions of this paper are: a) We embed CTL into STD which is a proper fragment of stratified Datalog. Moreover we show that STD expresses exactly CTL -- we prove that by embedding STD into CTL. Both embeddings are linear. b) CTL can also be embedded to fragments of Datalog without negation. We define a fragment of Datalog with the successor build-in predicate that we call TDS and we embed CTL into TDS in linear time. We build on the above relations to answer open problems of stratified Datalog. We prove that query evaluation is linear and that containment and satisfiability problems are both decidable. The results presented in this paper are the first for fragments of stratified Datalog that are more general than those containing only unary EDBs.Comment: 34 pages, 1 figure (file .eps

    Monadic Datalog Containment on Trees

    Get PDF
    We show that the query containment problem for monadic datalog on finite unranked labeled trees can be solved in 2-fold exponential time when (a) considering unordered trees using the axes child and descendant, and when (b) considering ordered trees using the axes firstchild, nextsibling, child, and descendant. When omitting the descendant-axis, we obtain that in both cases the problem is EXPTIME-complete.Comment: This article is the full version of an article published in the proccedings of the 8th Alberto Mendelzon Workshop (AMW 2014

    ON THE EXPRESSIVE POWER OF INFINITE TEMPORAL DATABASES

    Get PDF
    We discuss different techniques for representing infinite temporal data. There are two basic approaches: A procedural description, as used in production systems, and represented, in this paper, by a version of Datalog. The second approach is a more declarative method, using some form of temporal logic programming. We examine several versions of each approach, and compare their expressive power, i.e., what temporal data each formalism can capture.Information Systems Working Papers Serie

    Information integration using logical views

    Full text link

    Linear Datalog and Bounded Path Duality of Relational Structures

    Full text link
    In this paper we systematically investigate the connections between logics with a finite number of variables, structures of bounded pathwidth, and linear Datalog Programs. We prove that, in the context of Constraint Satisfaction Problems, all these concepts correspond to different mathematical embodiments of a unique robust notion that we call bounded path duality. We also study the computational complexity implications of the notion of bounded path duality. We show that every constraint satisfaction problem \csp(\best) with bounded path duality is solvable in NL and that this notion explains in a uniform way all families of CSPs known to be in NL. Finally, we use the results developed in the paper to identify new problems in NL

    Validation of schema mappings with nested queries

    Get PDF
    With the emergence of the Web and the wide use of XML for representing data, the ability to map not only flat relational but also nested data has become crucial. The design of schema mappings is a semi-automatic process. A human designer is needed to guide the process, choose among mapping candidates, and successively refine the mapping. The designer needs a way to figure out whether the mapping is what was intended. Our approach to mapping validation allows the designer to check whether the mapping satisfies certain desirable properties. In this paper, we focus on the validation of mappings between nested relational schemas, in which the mapping assertions are either inclusions or equalities of nested queries. We focus on the nested relational setting since most XML’s Document Type Definitions (DTDs) can be represented in this model. We perform the validation by reasoning on the schemas and mapping definition. We take into account the integrity constraints defined on both the source and target schema.Preprin
    corecore