80 research outputs found

    Exchange-Repairs: Managing Inconsistency in Data Exchange

    Full text link
    In a data exchange setting with target constraints, it is often the case that a given source instance has no solutions. In such cases, the semantics of target queries trivialize. The aim of this paper is to introduce and explore a new framework that gives meaningful semantics in such cases by using the notion of exchange-repairs. Informally, an exchange-repair of a source instance is another source instance that differs minimally from the first, but has a solution. Exchange-repairs give rise to a natural notion of exchange-repair certain answers (XR-certain answers) for target queries. We show that for schema mappings specified by source-to-target GAV dependencies and target equality-generating dependencies (egds), the XR-certain answers of a target conjunctive query can be rewritten as the consistent answers (in the sense of standard database repairs) of a union of conjunctive queries over the source schema with respect to a set of egds over the source schema, making it possible to use a consistent query-answering system to compute XR-certain answers in data exchange. We then examine the general case of schema mappings specified by source-to-target GLAV constraints, a weakly acyclic set of target tgds and a set of target egds. The main result asserts that, for such settings, the XR-certain answers of conjunctive queries can be rewritten as the certain answers of a union of conjunctive queries with respect to the stable models of a disjunctive logic program over a suitable expansion of the source schema.Comment: 29 pages, 13 figures, submitted to the Journal on Data Semantic

    Semantic Query Reformulation in Social PDMS

    Full text link
    We consider social peer-to-peer data management systems (PDMS), where each peer maintains both semantic mappings between its schema and some acquaintances, and social links with peer friends. In this context, reformulating a query from a peer's schema into other peer's schemas is a hard problem, as it may generate as many rewritings as the set of mappings from that peer to the outside and transitively on, by eventually traversing the entire network. However, not all the obtained rewritings are relevant to a given query. In this paper, we address this problem by inspecting semantic mappings and social links to find only relevant rewritings. We propose a new notion of 'relevance' of a query with respect to a mapping, and, based on this notion, a new semantic query reformulation approach for social PDMS, which achieves great accuracy and flexibility. To find rapidly the most interesting mappings, we combine several techniques: (i) social links are expressed as FOAF (Friend of a Friend) links to characterize peer's friendship and compact mapping summaries are used to obtain mapping descriptions; (ii) local semantic views are special views that contain information about external mappings; and (iii) gossiping techniques improve the search of relevant mappings. Our experimental evaluation, based on a prototype on top of PeerSim and a simulated network demonstrate that our solution yields greater recall, compared to traditional query translation approaches proposed in the literature.Comment: 29 pages, 8 figures, query rewriting in PDM

    A Review of Accessing Big Data with Significant Ontologies

    Get PDF
    Ontology Based Data Access (OBDA) is a recently proposed approach which is able to provide a conceptual view on relational data sources. It addresses the problem of the direct access to big data through providing end-users with an ontology that goes between users and sources in which the ontology is connected to the data via mappings. We introduced the languages used to represent the ontologies and the mapping assertions technique that derived the query answering from sources. Query answering is divided into two steps: (i) Ontology rewriting, in which the query is rewritten with respect to the ontology into new query; (ii) mapping rewriting the query that obtained from previous step reformulating it over the data sources using mapping assertions. In this survey, we aim to study the earlier works done by other researchers in the fields of ontology, mapping and query answering over data sources

    Peer Data Management

    Get PDF
    Peer Data Management (PDM) deals with the management of structured data in unstructured peer-to-peer (P2P) networks. Each peer can store data locally and define relationships between its data and the data provided by other peers. Queries posed to any of the peers are then answered by also considering the information implied by those mappings. The overall goal of PDM is to provide semantically well-founded integration and exchange of heterogeneous and distributed data sources. Unlike traditional data integration systems, peer data management systems (PDMSs) thereby allow for full autonomy of each member and need no central coordinator. The promise of such systems is to provide flexible data integration and exchange at low setup and maintenance costs. However, building such systems raises many challenges. Beside the obvious scalability problem, choosing an appropriate semantics that can deal with arbitrary, even cyclic topologies, data inconsistencies, or updates while at the same time allowing for tractable reasoning has been an area of active research in the last decade. In this survey we provide an overview of the different approaches suggested in the literature to tackle these problems, focusing on appropriate semantics for query answering and data exchange rather than on implementation specific problems

    Non-Monotonic Ontology-based Abstractions of Data Services

    Get PDF
    In Ontology-Based Data Access (OBDA), a domain ontology is linked to the data sources of an organization in order to query, integrate and manage data through the concepts and relations of the domain of interest, thus abstracting from the structure and the implementation details of the data layer. While the great majority of contributions in OBDA in the last decade have been concerned with the issue of computing the answers of queries expressed over the ontology, recent papers address a different problem, namely the one of providing suitable abstractions of data services, i.e., characterizing or explaining the semantics of queries over the sources in terms of queries over the domain ontology. Current works on this subject are based on expressing abstractions in terms of unions of conjunctive queries (UCQs). In this paper we advocate the use of a non-monotonic language for this task. As a first contribution, we present a simple extension of UCQs with nonmonotonic features, and show that non-monotonicity provides more expressive power in characterizing the semantics of data services. A second contribution is to prove that, similarly to the case of monotonic abstractions, depending on the expressive power of the languages used to specify the various components of the OBDA system, there are cases where neither perfect nor approximated abstractions exist for a given data service. As a third contribution, we single out interesting special cases where the existence of abstractions is guaranteed, and we present algorithms for computing such abstractions in these cases

    SemLAV: Local-As-View Mediation for SPARQL Queries

    Get PDF
    International audienceThe Local-As-View(LAV) integration approach aims at querying heterogeneous data in dynamic environments. In LAV, data sources are described as views over a global schema which is used to pose queries. Query processing requires to generate and execute query rewritings, but for SPARQL queries, the LAV query rewritings may not be generated or executed in a reasonable time. In this paper, we present SemLAV, an alternative technique to process SPARQL queries over a LAV integration system without generating rewritings. SemLAV executes the query against a partial instance of the global schema which is built on-the-fly with data from the relevant views. The paper presents an experimental study for SemLAV, and compares its performance with traditional LAV-based query processing techniques. The results suggest that SemLAV scales up to SPARQL queries even over a large number of views, while it significantly outperforms traditional solutions

    Ontology-Based RDF Integration of Heterogeneous Data

    Get PDF
    The proliferation of heterogeneous data sources in many application contexts brings an urgent need for expressive and efficient data integration mechanisms. There are strong advantages to using RDF graphs as the integration format: being schemaless, they allow for flexible integration of data from all sources; RDF graphs can be interpreted with the help of an ontology, describing application semantics; last but not least, RDF enables joint querying of the data and the ontology. To address this need, we introduce the novel class of RDF Integration Systems (RIS), going beyond the state of the art in the expressive power, that is, in the ability to expose, integrate and flexibly query data from heterogeneous sources through GLAV (global-local-as-view) mappings. Our second contribution is a set of query answering strategies, two combining existing techniques and three others based on an innovative integration of view-based rewriting; our experiments show that the latter bring strong performance advantages

    Abstraction in ontology-based data management

    Get PDF
    In many aspects of our society there is growing awareness and consent on the need for data-driven approaches that are resilient, transparent, and fully accountable. But in order to fulfil the promises and benefits of a data-driven society, it is necessary that the data services exposed by the organisations' information systems are well-documented, and their semantics is clearly specified. Effectively documenting data services is indeed a crucial issue for organisations, not only for governing their own data, but also for interoperation purposes. In this thesis, we propose a new approach to automatically associate formal semantic descriptions to data services, thus bringing them into compliance with the FAIR guiding principles, i.e., make data services automatically Findable, Accessible, Interoperable, and Reusable (FAIR). We base our proposal on the Ontology-based Data Management (OBDM) paradigm, where a domain ontology is used to provide a semantic layer mapped to the data sources of an organisation, thus abstracting from the technical details of the data layer implementation. The basic idea is to characterise or explain the semantics of a given data service expressed as query over the source schema in terms of a query over the ontology. Thus, the query over the ontology represents an abstraction of the given data service in terms of the domain ontology through the mapping, and, together with the elements in the vocabulary of the ontology, such abstraction forms a basis for annotating the given data service with suitable metadata expressing its semantics. We illustrate a formal framework for the task of automatically produce a semantic characterisation of a given data service expressed as a query over the source schema. The framework is based on three semantically well-founded notions, namely perfect, sound, and complete source-to-ontology rewriting, and on two associated basic computational problems, namely verification and computation. The former verifies whether a given query over the ontology is a perfect (respectively, sound, complete) source-to-ontology rewriting of a given data service expressed as a query over the source schema, whereas the latter computes one such rewriting, provided it exists. We provide an in-depth complexity analysis of these two computational problems in a very general scenario which uses languages amongst the most popular considered in the literature of managing data through an ontology. Furthermore, since we study also cases where the target query language for expressing source-to-ontology rewritings allows inequality atoms, we also investigate the problem of answering queries with inequalities over lightweight ontologies, a problem that has been rarely addressed. In another direction, we study and advocate the use of a non-monotonic target query language for expressing source-to-ontology rewritings. Last but not least, we outline a detailed related work, which illustrates how the results achieved in this thesis notably contributes to new results in the Semantic Web context, in the relational database theory, and in view-based query processing
    • …
    corecore