4,730 research outputs found

    Query Analyzer and Manager for Complex Event Processing as a Service

    Get PDF
    Complex Event Processing (CEP) is a set of tools and techniques that can be used to obtain insights from high-volume, high-velocity continuous streams of events. CEP-based systems have been adopted in many situations that require prompt establishment of system diagnostics and execution of reaction plans, such as in monitoring of complex systems. This article describes the Query Analyzer and Manager (QAM) module, a first effort toward the development of a CEP as a Service (CEPaaS) system. This module is responsible for analyzing user-defined CEP queries and for managing their execution in distributed cloud-based environments. Using a language-agnostic internal query representation, QAM has a modular design that enables its adoption by virtually any CEP system

    From Inception to Execution: Query Management for Complex Event Processing as a Service

    Get PDF
    International audienceComplex Event Processing (CEP) is a set of tools and techniques that can be used to obtain insights from high- volume, high-velocity continuous streams of events. CEP-based systems have been adopted in many situations that require prompt establishment of system diagnostics and execution of reaction plans, such as in monitoring of complex systems. This article describes the Query Analyzer and Manager (QAM) mod- ule, a first effort toward the development of a CEP as a Service (CEPaaS) system. This module is responsible for analyzing user-defined CEP queries and for managing their execution in distributed cloud-based environments. Using a language-agnostic internal query representation, QAM has a modular design that enables its adoption by virtually any CEP system

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    Natural language processing and advanced information management

    Get PDF
    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way

    Complex Event Processing as a Service in Multi-Cloud Environments

    Get PDF
    The rise of mobile technologies and the Internet of Things, combined with advances in Web technologies, have created a new Big Data world in which the volume and velocity of data generation have achieved an unprecedented scale. As a technology created to process continuous streams of data, Complex Event Processing (CEP) has been often related to Big Data and used as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP market is still dominated by solutions that are costly and inflexible or too low-level and hard to operate. To address these problems, this research proposes the creation of a CEP system that can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system would give its users CEP functionalities associated with the advantages of the services model, such as no up-front investment and low maintenance cost. Nevertheless, creating such a service involves challenges that are not addressed by current CEP systems. This research proposes solutions for three open problems that exist in this context. First, to address the problem of understanding and reusing existing CEP management procedures, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism as a technology- and language-agnostic representation of queries and their reconfigurations. Second, to address the problem of evaluating CEP query management and processing strategies, this research introduces CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant design. To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by experiments that showed it can simulate existing systems with accuracy and low execution overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-tolerant service. In tandem, these results confirm this research significantly advances the CEP state of the art and provides novel tools and methodologies that can be applied to CEP research

    Processamento de eventos complexos como serviço em ambientes multi-nuvem

    Get PDF
    Orientadores: Luiz Fernando Bittencourt, Miriam Akemi Manabe CapretzTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O surgimento das tecnologias de dispositivos móveis e da Internet das Coisas, combinada com avanços das tecnologias Web, criou um novo mundo de Big Data em que o volume e a velocidade da geração de dados atingiu uma escala sem precedentes. Por ser uma tecnologia criada para processar fluxos contínuos de dados, o Processamento de Eventos Complexos (CEP, do inglês Complex Event Processing) tem sido frequentemente associado a Big Data e aplicado como uma ferramenta para obter informações em tempo real. Todavia, apesar desta onda de interesse, o mercado de CEP ainda é dominado por soluções proprietárias que requerem grandes investimentos para sua aquisição e não proveem a flexibilidade que os usuários necessitam. Como alternativa, algumas empresas adotam soluções de baixo nível que demandam intenso treinamento técnico e possuem alto custo operacional. A fim de solucionar esses problemas, esta pesquisa propõe a criação de um sistema de CEP que pode ser oferecido como serviço e usado através da Internet. Um sistema de CEP como Serviço (CEPaaS, do inglês CEP as a Service) oferece aos usuários as funcionalidades de CEP aliadas às vantagens do modelo de serviços, tais como redução do investimento inicial e baixo custo de manutenção. No entanto, a criação de tal serviço envolve inúmeros desafios que não são abordados no atual estado da arte de CEP. Em especial, esta pesquisa propõe soluções para três problemas em aberto que existem neste contexto. Em primeiro lugar, para o problema de entender e reusar a enorme variedade de procedimentos para gerência de sistemas CEP, esta pesquisa propõe o formalismo Reescrita de Grafos com Atributos para Gerência de Processamento de Eventos Complexos (AGeCEP, do inglês Attributed Graph Rewriting for Complex Event Processing Management). Este formalismo inclui modelos para consultas CEP e transformações de consultas que são independentes de tecnologia e linguagem. Em segundo lugar, para o problema de avaliar estratégias de gerência e processamento de consultas CEP, esta pesquisa apresenta CEPSim, um simulador de sistemas CEP baseado em nuvem. Por fim, esta pesquisa também descreve um sistema CEPaaS fundamentado em ambientes multi-nuvem, sistemas de gerência de contêineres e um design multiusuário baseado em AGeCEP. Para demonstrar sua viabilidade, o formalismo AGeCEP foi usado para projetar um gerente autônomo e um conjunto de políticas de auto-gerenciamento para sistemas CEP. Além disso, o simulador CEPSim foi minuciosamente avaliado através de experimentos que demonstram sua capacidade de simular sistemas CEP com acurácia e baixo custo adicional de processamento. Por fim, experimentos adicionais validaram o sistema CEPaaS e demonstraram que o objetivo de oferecer funcionalidades CEP como um serviço escalável e tolerante a falhas foi atingido. Em conjunto, esses resultados confirmam que esta pesquisa avança significantemente o estado da arte e também oferece novas ferramentas e metodologias que podem ser aplicadas à pesquisa em CEPAbstract: The rise of mobile technologies and the Internet of Things, combined with advances in Web technologies, have created a new Big Data world in which the volume and velocity of data generation have achieved an unprecedented scale. As a technology created to process continuous streams of data, Complex Event Processing (CEP) has been often related to Big Data and used as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP market is still dominated by solutions that are costly and inflexible or too low-level and hard to operate. To address these problems, this research proposes the creation of a CEP system that can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system would give its users CEP functionalities associated with the advantages of the services model, such as no up-front investment and low maintenance cost. Nevertheless, creating such a service involves challenges that are not addressed by current CEP systems. This research proposes solutions for three open problems that exist in this context. First, to address the problem of understanding and reusing existing CEP management procedures, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism as a technology- and language-agnostic representation of queries and their reconfigurations. Second, to address the problem of evaluating CEP query management and processing strategies, this research introduces CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant design. To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by experiments that showed it can simulate existing systems with accuracy and low execution overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-tolerant service. In tandem, these results confirm this research significantly advances the CEP state of the art and provides novel tools and methodologies that can be applied to CEP researchDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140920/2012-9CNP

    Analyzing audit trails in a distributed and hybrid intrusion detection platform

    Get PDF
    Efforts have been made over the last decades in order to design and perfect Intrusion Detection Systems (IDS). In addition to the widespread use of Intrusion Prevention Systems (IPS) as perimeter defense devices in systems and networks, various IDS solutions are used together as elements of holistic approaches to cyber security incident detection and prevention, including Network-Intrusion Detection Systems (NIDS) and Host-Intrusion Detection Systems (HIDS). Nevertheless, specific IDS and IPS technology face several effectiveness challenges to respond to the increasing scale and complexity of information systems and sophistication of attacks. The use of isolated IDS components, focused on one-dimensional approaches, strongly limits a common analysis based on evidence correlation. Today, most organizations’ cyber-security operations centers still rely on conventional SIEM (Security Information and Event Management) technology. However, SIEM platforms also have significant drawbacks in dealing with heterogeneous and specialized security event-sources, lacking the support for flexible and uniform multi-level analysis of security audit-trails involving distributed and heterogeneous systems. In this thesis, we propose an auditing solution that leverages on different intrusion detection components and synergistically combines them in a Distributed and Hybrid IDS (DHIDS) platform, taking advantage of their benefits while overcoming the effectiveness drawbacks of each one. In this approach, security events are detected by multiple probes forming a pervasive, heterogeneous and distributed monitoring environment spread over the network, integrating NIDS, HIDS and specialized Honeypot probing systems. Events from those heterogeneous sources are converted to a canonical representation format, and then conveyed through a Publish-Subscribe middleware to a dedicated logging and auditing system, built on top of an elastic and scalable document-oriented storage system. The aggregated events can then be queried and matched against suspicious attack signature patterns, by means of a proposed declarative query-language that provides event-correlation semantics

    Configuração automática de plataforma de gestão de desempenho em ambientes NFV e SDN

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaWith 5G set to arrive within the next three years, this next-generation of mobile networks will transform the mobile industry with a profound impact both on its customers as well as on the existing technologies and network architectures. Software-Defined Networking (SDN), together with Network Functions Virtualization (NFV), are going to play key roles for the operators as they prepare the migration from 4G to 5G allowing them to quickly scale their networks. This dissertation will present a research work done on this new paradigm of virtualized and programmable networks focusing on the performance management, supervision and monitoring domains, aiming to address Self-Organizing Networks (SON) scenarios in a NFV/SDN context, with one of the scenarios being the detection and prediction of potential network and service anomalies. The research work itself was done while participating in a R&D project designated SELFNET (A Framework for Self-Organized Network Management in Virtualized and Software Defined Networks) funded by the European Commission under the H2020 5G-PPP programme, with Altice Labs being one of the participating partners of this project. Performance management system advancements in a 5G scenario require aggregation, correlation and analysis of data gathered from these virtualized and programmable network elements. Both opensource monitoring tools and customized catalog-driven tools were either integrated on or developed with this purpose, and the results show that they were able to successfully address these requirements of the SELFNET project. Current performance management platforms of the network operators in production are designed for non virtualized (non- NFV) and non programmable (non-SDN) networks, and the knowledge gathered while doing this research work allowed Altice Labs to understand how its Altaia performance management platform must evolve in order to be prepared for the upcoming 5G next generation mobile networks.Com o 5G prestes a chegar nos próximos três anos, esta próxima geração de redes móveis irá transformar a indústria de telecomunicações móveis com um impacto profundo nos seus clientes assim como nas tecnologias e arquiteturas de redes. As redes programáveis (SDN), em conjunto com a virtualização de funções de rede (NFV), irão desempenhar papéis vitais para as operadoras na sua migração do 4G para o 5G, permitindo-as escalar as suas redes rapidamente. Esta dissertação irá apresentar um trabalho de investigação realizado sobre este novo paradigma de virtualização e programação de redes, concentrando-se no domínio da gestão de desempenho, supervisionamento e monitoria, abordando cenários de redes auto-organizadas (SON) num contexto NFV/SDN, sendo um destes cenários a deteção e predição de potenciais anomalias de redes e serviços. O trabalho de investigação foi enquadrado num projeto de I&D designado SELFNET (A Framework for Self-Organized Network Management in Virtualized and Software Defined Networks) financiado pela Comissão Europeia no âmbito do programa H2020 5G-PPP, sendo a Altice Labs um dos parceiros participantes deste projeto. Avanços em sistemas de gestão de desempenho em cenários 5G requerem agregação, correlação e análise de dados recolhidos destes elementos de rede programáveis e virtualizados. Ferramentas de monitoria open-source e ferramentas catalog-driven foram integradas ou desenvolvidas com este propósito, e os resultados mostram que estas preencheram os requisitos do projeto SELFNET com sucesso. As plataformas de gestão de desempenho das operadoras de rede atualmente em produção estão concebidas para redes não virtualizadas (non-NFV) e não programáveis (non- SDN), e o conhecimento adquirido durante este trabalho de investigação permitiu à Altice Labs compreender como a sua plataforma de gestão de desempenho (Altaia) terá que evoluir por forma a preparar-se para a próxima geração de redes móveis 5G

    Application of JXTA-overlay platform for secure robot control

    Get PDF
    In this paper, we present the evaluation and experimental results of secured robot control in a P2P system. The control system is based on JXTA-Overlay platform. We used secure primitives and functions of JXTA-Overlay for the secure control of the robot motors. We investigated the time of robot control for some scenarios with different number of peers connected in JXTA-Overlay network. All experiments are realised in a LAN environment. The experimental results show that with the join of other peers in the network, the average time of robot control is increased, but the difference between the secure and unsecure robot control average time is nearly the samePeer ReviewedPostprint (published version
    • …
    corecore