46 research outputs found

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    Surfaces immersed in su(N+1) Lie algebras obtained from the CP^N sigma models

    Full text link
    We study some geometrical aspects of two dimensional orientable surfaces arrising from the study of CP^N sigma models. To this aim we employ an identification of R^(N(N+2)) with the Lie algebra su(N+1) by means of which we construct a generalized Weierstrass formula for immersion of such surfaces. The structural elements of the surface like its moving frame, the Gauss-Weingarten and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of the CP^N model defining it. Further, the first and second fundamental forms, the Gaussian curvature, the mean curvature vector, the Willmore functional and the topological charge of surfaces are expressed in terms of this solution. We present detailed implementation of these results for surfaces immersed in su(2) and su(3) Lie algebras.Comment: 32 pages, 1 figure; changes: major revision of presentation, clarifications adde

    On semidiscrete constant mean curvature surfaces and their associated families

    Get PDF
    The present paper studies semidiscrete surfaces in three-dimensional Euclidean space within the framework of integrable systems. In particular, we investigate semidiscrete surfaces with constant mean curvature along with their associated families. The notion of mean curvature introduced in this paper is motivated by a recently developed curvature theory for quadrilateral meshes equipped with unit normal vectors at the vertices, and extends previous work on semidiscrete surfaces. In the situation of vanishing mean curvature, the associated families are defined via a Weierstrass representation. For the general cmc case, we introduce a Lax pair representation that directly defines associated families of cmc surfaces, and is connected to a semidiscrete [Formula: see text] -Gordon equation. Utilizing this theory we investigate semidiscrete Delaunay surfaces and their connection to elliptic billiards
    corecore