21 research outputs found

    Image-based family verification in the wild

    Get PDF
    Facial image analysis has been an important subject of study in the communities of pat- tern recognition and computer vision. Facial images contain much information about the person they belong to: identity, age, gender, ethnicity, expression and many more. For that reason, the analysis of facial images has many applications in real world problems such as face recognition, age estimation, gender classification or facial expression recognition. Visual kinship recognition is a new research topic in the scope of facial image analysis. It is essential for many real-world applications. However, nowadays there exist only a few practical vision systems capable to handle such tasks. Hence, vision technology for kinship-based problems has not matured enough to be applied to real- world problems. This leads to a concern of unsatisfactory performance when attempted on real-world datasets. Kinship verification is to determine pairwise kin relations for a pair of given images. It can be viewed as a typical binary classification problem, i.e., a face pair is either related by kinship or it is not. Prior research works have addressed kinship types for which pre-existing datasets have provided images, annotations and a verification task protocol. Namely, father-son, father-daughter, mother-son and mother-daughter. The main objective of this Master work is the study and development of feature selection and fusion for the problem of family verification from facial images. To achieve this objective, there is a main tasks that can be addressed: perform a compara- tive study on face descriptors that include classic descriptors as well as deep descriptors. The main contributions of this Thesis work are: 1. Studying the state of the art of the problem of family verification in images. 2. Implementing and comparing several criteria that correspond to different face rep- resentations (Local Binary Patterns (LBP), Histogram Oriented Gradients (HOG), deep descriptors)

    Feature Fusion and NRML Metric Learning for Facial Kinship Verification

    Get PDF
    Features extracted from facial images are used in various fields such as kinship verification. The kinship verification system determines the kin or non-kin relation between a pair of facial images by analysing their facial features. In this research, different texture and color features have been used along with the metric learning method, to verify the kinship for the four kinship relations of father-son, father-daughter, mother-son and mother-daughter. First, by fusing effective features, NRML metric learning used to generate the discriminative feature vector, then SVM classifier used to verify to kinship relations. To measure the accuracy of the proposed method, KinFaceW-I and KinFaceW-II databases have been used. The results of the evaluations show that the feature fusion and NRML metric learning methods have been able to improve the performance of the kinship verification system. In addition to the proposed approach, the effect of feature extraction from the image blocks or the whole image is investigated and the results are presented. The results indicate that feature extraction in block form, can be effective in improving the final accuracy of kinship verification

    Novel image descriptors and learning methods for image classification applications

    Get PDF
    Image classification is an active and rapidly expanding research area in computer vision and machine learning due to its broad applications. With the advent of big data, the need for robust image descriptors and learning methods to process a large number of images for different kinds of visual applications has greatly increased. Towards that end, this dissertation focuses on exploring new image descriptors and learning methods by incorporating important visual aspects and enhancing the feature representation in the discriminative space for advancing image classification. First, an innovative sparse representation model using the complete marginal Fisher analysis (CMFA-SR) framework is proposed for improving the image classification performance. In particular, the complete marginal Fisher analysis method extracts the discriminatory features in both the column space of the local samples based within class scatter matrix and the null space of its transformed matrix. To further improve the classification capability, a discriminative sparse representation model is proposed by integrating a representation criterion such as the sparse representation and a discriminative criterion. Second, the discriminative dictionary distribution based sparse coding (DDSC) method is presented that utilizes both the discriminative and generative information to enhance the feature representation. Specifically, the dictionary distribution criterion reveals the class conditional probability of each dictionary item by using the dictionary distribution coefficients, and the discriminative criterion applies new within-class and between-class scatter matrices for discriminant analysis. Third, a fused color Fisher vector (FCFV) feature is developed by integrating the most expressive features of the DAISY Fisher vector (D-FV) feature, the WLD-SIFT Fisher vector (WS-FV) feature, and the SIFT-FV feature in different color spaces to capture the local, color, spatial, relative intensity, as well as the gradient orientation information. Furthermore, a sparse kernel manifold learner (SKML) method is applied to the FCFV features for learning a discriminative sparse representation by considering the local manifold structure and the label information based on the marginal Fisher criterion. Finally, a novel multiple anthropological Fisher kernel framework (M-AFK) is presented to extract and enhance the facial genetic features for kinship verification. The proposed method is derived by applying a novel similarity enhancement approach based on SIFT flow and learning an inheritable transformation on the multiple Fisher vector features that uses the criterion of minimizing the distance among the kinship samples and maximizing the distance among the non-kinship samples. The effectiveness of the proposed methods is assessed on numerous image classification tasks, such as face recognition, kinship verification, scene classification, object classification, and computational fine art painting categorization. The experimental results on popular image datasets show the feasibility of the proposed methods

    Image-based family verification in the wild

    Get PDF
    Facial image analysis has been an important subject of study in the communities of pat- tern recognition and computer vision. Facial images contain much information about the person they belong to: identity, age, gender, ethnicity, expression and many more. For that reason, the analysis of facial images has many applications in real world problems such as face recognition, age estimation, gender classification or facial expression recognition. Visual kinship recognition is a new research topic in the scope of facial image analysis. It is essential for many real-world applications. However, nowadays there exist only a few practical vision systems capable to handle such tasks. Hence, vision technology for kinship-based problems has not matured enough to be applied to real- world problems. This leads to a concern of unsatisfactory performance when attempted on real-world datasets. Kinship verification is to determine pairwise kin relations for a pair of given images. It can be viewed as a typical binary classification problem, i.e., a face pair is either related by kinship or it is not. Prior research works have addressed kinship types for which pre-existing datasets have provided images, annotations and a verification task protocol. Namely, father-son, father-daughter, mother-son and mother-daughter. The main objective of this Master work is the study and development of feature selection and fusion for the problem of family verification from facial images. To achieve this objective, there is a main tasks that can be addressed: perform a compara- tive study on face descriptors that include classic descriptors as well as deep descriptors. The main contributions of this Thesis work are: 1. Studying the state of the art of the problem of family verification in images. 2. Implementing and comparing several criteria that correspond to different face rep- resentations (Local Binary Patterns (LBP), Histogram Oriented Gradients (HOG), deep descriptors)
    corecore