301 research outputs found

    Color Image Analysis by Quaternion-Type Moments

    No full text
    International audienceIn this paper, by using the quaternion algebra, the conventional complex-type moments (CTMs) for gray-scale images are generalized to color images as quaternion-type moments (QTMs) in a holistic manner. We first provide a general formula of QTMs from which we derive a set of quaternion-valued QTM invariants (QTMIs) to image rotation, scale and translation transformations by eliminating the influence of transformation parameters. An efficient computation algorithm is also proposed so as to reduce computational complexity. The performance of the proposed QTMs and QTMIs are evaluated considering several application frameworks ranging from color image reconstruction, face recognition to image registration. We show they achieve better performance than CTMs and CTM invariants (CTMIs). We also discuss the choice of the unit pure quaternion influence with the help of experiments. appears to be an optimal choice

    Non-Intrusive Affective Assessment in the Circumplex Model from Pupil Diameter and Facial Expression Monitoring

    Get PDF
    Automatic methods for affective assessment seek to enable computer systems to recognize the affective state of their users. This dissertation proposes a system that uses non-intrusive measurements of the user’s pupil diameter and facial expression to characterize his /her affective state in the Circumplex Model of Affect. This affective characterization is achieved by estimating the affective arousal and valence of the user’s affective state. In the proposed system the pupil diameter signal is obtained from a desktop eye gaze tracker, while the face expression components, called Facial Animation Parameters (FAPs) are obtained from a Microsoft Kinect module, which also captures the face surface as a cloud of points. Both types of data are recorded 10 times per second. This dissertation implemented pre-processing methods and fixture extraction approaches that yield a reduced number of features representative of discrete 10-second recordings, to estimate the level of affective arousal and the type of affective valence experienced by the user in those intervals. The dissertation uses a machine learning approach, specifically Support Vector Machines (SVMs), to act as a model that will yield estimations of valence and arousal from the features derived from the data recorded. Pupil diameter and facial expression recordings were collected from 50 subjects who volunteered to participate in an FIU IRB-approved experiment to capture their reactions to the presentation of 70 pictures from the International Affective Picture System (IAPS) database, which have been used in large calibration studies and therefore have associated arousal and valence mean values. Additionally, each of the 50 volunteers in the data collection experiment provided their own subjective assessment of the levels of arousal and valence elicited in him / her by each picture. This process resulted in a set of face and pupil data records, along with the expected reaction levels of arousal and valence, i.e., the “labels”, for the data used to train and test the SVM classifiers. The trained SVM classifiers achieved 75% accuracy for valence estimation and 92% accuracy in arousal estimation, confirming the initial viability of non-intrusive affective assessment systems based on pupil diameter and face expression monitoring

    Multimodal Computational Attention for Scene Understanding

    Get PDF
    Robotic systems have limited computational capacities. Hence, computational attention models are important to focus on specific stimuli and allow for complex cognitive processing. For this purpose, we developed auditory and visual attention models that enable robotic platforms to efficiently explore and analyze natural scenes. To allow for attention guidance in human-robot interaction, we use machine learning to integrate the influence of verbal and non-verbal social signals into our models

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Satellite Articulation Sensing using Computer Vision

    Get PDF
    Autonomous on-orbit satellite servicing benefits from an inspector satellite that can gain as much information as possible about the primary satellite. This includes performance of articulated objects such as solar arrays, antennas, and sensors. A method for building an articulated model from monocular imagery using tracked feature points and the known relative inspection route is developed. Two methods are also developed for tracking the articulation of a satellite in real-time given an articulated model using both tracked feature points and image silhouettes. Performance is evaluated for multiple inspection routes and the effect of inspection route noise is assessed. Additionally, a satellite model is built and used to collect stop-motion images simulating articulated motion over an inspection route under simulated space illumination. The images are used in the silhouette articulation tracking method and successful tracking is demonstrated qualitatively. Finally, a human pose tracking algorithm is modified for tracking the satellite articulation demonstrating the applicability of human tracking methods to satellite articulation tracking methods when an articulated model is available
    • …
    corecore