27 research outputs found

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    On-Manifold Recursive Bayesian Estimation for Directional Domains

    Get PDF

    A Quaternionic Version Theory related to Spheroidal Functions

    Get PDF
    In dieser Arbeit wird eine neue Theorie der quaternionischen Funktionen vorgestellt, welche das Problem der Bestapproximation von Familien prolater und oblater sphĂ€roidalen Funktionen im HilbertrĂ€umen behandelt. Die allgemeine Theorie beginnt mit der expliziten Konstruktion von orthogonalen Basen fĂŒr RĂ€ume, definiert auf sphĂ€roidalen Gebieten mit beliebiger ExzentrizitĂ€t, deren Elemente harmonische, monogene und kontragene Funktionen sind und durch die Form der Gebiete parametrisiert werden. Eine detaillierte Studie dieser grundlegenden Elemente wird in dieser Arbeit durchgefĂŒhrt. Der Begriff der kontragenen Funktion hĂ€ngt vom Definitionsbereich ab und ist daher keine lokale Eigenschaft, wĂ€hrend die Begriffe der harmonischen und monogenen Funktionen lokal sind. Es werden verschiedene Umwandlungsformeln vorgestellt, die Systeme harmonischer, monogener und kontragener Funktionen auf SphĂ€roiden unterschiedlicher ExzentrizitĂ€t in Beziehung setzen. DarĂŒber hinaus wird die Existenz gemeinsamer nichttrivialer kontragener Funktionen fĂŒr SphĂ€roide jeglicher ExzentrizitĂ€t gezeigt. Der zweite wichtige Beitrag dieser Arbeit betrifft eine quaternionische Raumfrequenztheorie fĂŒr bandbegrenzte quaternionische Funktionen. Es wird eine neue Art von quaternionischen Signalen vorgeschlagen, deren Energiekonzentration im Raum und in den Frequenzbereichen unter der quaternionischen Fourier-Transformation maximal ist. DarĂŒber hinaus werden diese Signale im Kontext der Spektralkonzentration als Eigenfunktionen eines kompakten und selbstadjungierteren quaternionischen Integraloperators untersucht und die grundlegenden Eigenschaften ihrer zugehörigen Eigenwerte werden detailliert beschrieben. Wenn die Konzentrationsgebiete beider RĂ€ume kugelförmig sind, kann der Winkelanteil dieser Signale explizit gefunden werden, was zur Lösung von mehreren eindimensionalen radialen Integralgleichungen fĂŒhrt. Wir nutzen die theoretischen Ergebnisse und harmonische Konjugierten um Klassen monogener Funktionen in verschiedenen RĂ€umen zu konstruieren. Zur Charakterisierung der monogenen gewichteten Hardy- und Bergman-RĂ€ume in der Einheitskugel werden zwei konstruktive Algorithmen vorgeschlagen. FĂŒr eine reelle harmonische Funktion, die zu einem gewichteten Hardy- und Bergman-Raum gehört, werden die harmonischen Konjugiert in den gleichen RĂ€umen gefunden. Die BeschrĂ€nktheit der zugrundeliegenden harmonischen Konjugationsoperatoren wird in den angegebenen gewichteten RĂ€umen bewiesen. ZusĂ€tzlich wird ein quaternionisches GegenstĂŒck zum Satz von Bloch fĂŒr monogene Funktionen bewiesen.This work presents a novel Quaternionic Function Theory associated with the best approximation problem in the setting of Hilbert spaces concerning families of prolate and oblate spheroidal functions. The general theory begins with the explicit construction of orthogonal bases for the spaces of harmonic, monogenic, and contragenic functions defined in spheroidal domains of arbitrary eccentricity, whose elements are parametrized by the shape of the corresponding spheroids. A detailed study regarding the elements that constitute these bases is carried out in this thesis. The notion of a contragenic function depends on the domain, and, therefore, it is not a local property in contrast to the concepts of harmonic and monogenic functions. Various conversion formulas that relate systems of harmonic, monogenic, and contragenic functions associated with spheroids of differing eccentricity are presented. Furthermore, the existence of standard nontrivial contragenic functions is shown for spheroids of any eccentricity. The second significant contribution presented in this work pertains to a quaternionic space-frequency theory for band-limited quaternionic functions. A new class of quaternionic signals is proposed, whose energy concentration in the space and the frequency domains are maximal under the quaternion Fourier transform. These signals are studied in the context of spatial-frequency concentration as eigenfunctions of a compact and self-adjoint quaternion integral operator. The fundamental properties of their associated eigenvalues are described in detail. When the concentration domains are spherical in both spaces, the angular part of these signals can be found explicitly, leading to a set of one-dimensional radial integral equations. The theoretical framework described in this work is applied to the construction of classes of monogenic functions in different spaces via harmonic conjugates. Two constructive algorithms are proposed to characterize the monogenic weighted Hardy and Bergman spaces in the Euclidean unit ball. For a real-valued harmonic function belonging to a Hardy and a weighted Bergman space, the harmonic conjugates in the same spaces are found. The boundedness of the underlying harmonic conjugation operators is proven in the given weighted spaces. Additionally, a quaternionic counterpart of Bloch’s Theorem is established for monogenic functions

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Multitarget Tracking Using Orientation Estimation for Optical Belt Sorting

    Get PDF
    In optical belt sorting, accurate predictions of the bulk material particles’ motions are required for high-quality results. By implementing a multitarget tracker tailored to the scenario and deriving novel motion models, the predictions are greatly enhanced. The tracker’s reliability is improved by also considering the particles’ orientations. To this end, new estimators for directional quantities based on orthogonal basis functions are presented and shown to outperform the state of the art

    Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins

    Get PDF
    abstract: In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.Dissertation/ThesisDoctoral Dissertation Physics 201

    Graphical models for visual object recognition and tracking

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 277-301).We develop statistical methods which allow effective visual detection, categorization, and tracking of objects in complex scenes. Such computer vision systems must be robust to wide variations in object appearance, the often small size of training databases, and ambiguities induced by articulated or partially occluded objects. Graphical models provide a powerful framework for encoding the statistical structure of visual scenes, and developing corresponding learning and inference algorithms. In this thesis, we describe several models which integrate graphical representations with nonparametric statistical methods. This approach leads to inference algorithms which tractably recover high-dimensional, continuous object pose variations, and learning procedures which transfer knowledge among related recognition tasks. Motivated by visual tracking problems, we first develop a nonparametric extension of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide general procedures for recursively updating particle-based approximations of continuous sufficient statistics. Efficient multiscale sampling methods then allow this nonparametric BP algorithm to be flexibly adapted to many different applications.(cont.) As a particular example, we consider a graphical model describing the hand's three-dimensional (3D) structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D position and orientation of several rigid components, and thus exposes local structure in a high-dimensional articulated model. Applying nonparametric BP, we recover a hand tracking algorithm which is robust to outliers and local visual ambiguities. Via a set of latent occupancy masks, we also extend our approach to consistently infer occlusion events in a distributed fashion. In the second half of this thesis, we develop methods for learning hierarchical models of objects, the parts composing them, and the scenes surrounding them. Our approach couples topic models originally developed for text analysis with spatial transformations, and thus consistently accounts for geometric constraints. By building integrated scene models, we may discover contextual relationships, and better exploit partially labeled training images. We first consider images of isolated objects, and show that sharing parts among object categories improves accuracy when learning from few examples.(cont.) Turning to multiple object scenes, we propose nonparametric models which use Dirichlet processes to automatically learn the number of parts underlying each object category, and objects composing each scene. Adapting these transformed Dirichlet processes to images taken with a binocular stereo camera, we learn integrated, 3D models of object geometry and appearance. This leads to a Monte Carlo algorithm which automatically infers 3D scene structure from the predictable geometry of known object categories.by Erik B. Sudderth.Ph.D
    corecore