19 research outputs found

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Advanced Information Processing Methods and Their Applications

    Get PDF
    This Special Issue has collected and presented breakthrough research on information processing methods and their applications. Particular attention is paid to the study of the mathematical foundations of information processing methods, quantum computing, artificial intelligence, digital image processing, and the use of information technologies in medicine

    New Avenues for Einstein's Gravity: from Penrose's Twistors to Hitchin's Three-Forms

    Full text link
    In this thesis we take Einstein theory in dimension four seriously, and explore the special aspects of gravity in this number of dimension. Among the many surprising features in dimension four, one of them is the possibility of `Chiral formulations of gravity' - they are surprising as they typically do not rely on a metric. Another is the existence of the Twistor correspondence. The Chiral and Twistor formulations might seems different in nature. In the first part of this thesis we demonstrate that they are in fact closely related. In particular we give a new proof for Penrose's `non-linear graviton theorem' that relies on the geometry of SU(2)-connections only (rather than on metric). In the second part of this thesis we describe partial results towards encoding the full GR in the total space of some fibre bundle over space-time. We indeed show that gravity theory in three and four dimensions can be related to theories of a completely different nature in six and seven dimension respectively. This theories, first advertised by Hitchin, are diffeomorphism invariant theories of differential three-forms. Starting with seven dimensions, we are only partially succesfull: the resulting theory is some deformed version of gravity. We however found that solutions to a particular gravity theory in four dimension have a seven dimensional interpretation as G2 holonomy manifold. On the other hand by going from six to three dimension we do recover three dimensional gravity. As a bonus, we describe new diffeomorphism invariant functionnals for differential forms in six dimension and prove that two of them are topological.Comment: This thesis can also be found on https://tel.archives-ouvertes.fr/tel-0165003

    Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), Vol. IV

    Get PDF
    The fourth volume, in my book series of “Collected Papers”, includes 100 published and unpublished articles, notes, (preliminary) drafts containing just ideas to be further investigated, scientific souvenirs, scientific blogs, project proposals, small experiments, solved and unsolved problems and conjectures, updated or alternative versions of previous papers, short or long humanistic essays, letters to the editors - all collected in the previous three decades (1980-2010) – but most of them are from the last decade (2000-2010), some of them being lost and found, yet others are extended, diversified, improved versions. This is an eclectic tome of 800 pages with papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory, information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics. It was my preoccupation and collaboration as author, co-author, translator, or cotranslator, and editor with many scientists from around the world for long time. Many topics from this book are incipient and need to be expanded in future explorations
    corecore