272 research outputs found

    The cerebellum could solve the motor error problem through error increase prediction

    Get PDF
    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error problem. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.Comment: 34 pages (without bibliography), 13 figure

    Neuromorphic computing for attitude estimation onboard quadrotors

    Full text link
    Compelling evidence has been given for the high energy efficiency and update rates of neuromorphic processors, with performance beyond what standard Von Neumann architectures can achieve. Such promising features could be advantageous in critical embedded systems, especially in robotics. To date, the constraints inherent in robots (e.g., size and weight, battery autonomy, available sensors, computing resources, processing time, etc.), and particularly in aerial vehicles, severely hamper the performance of fully-autonomous on-board control, including sensor processing and state estimation. In this work, we propose a spiking neural network (SNN) capable of estimating the pitch and roll angles of a quadrotor in highly dynamic movements from 6-degree of freedom Inertial Measurement Unit (IMU) data. With only 150 neurons and a limited training dataset obtained using a quadrotor in a real world setup, the network shows competitive results as compared to state-of-the-art, non-neuromorphic attitude estimators. The proposed architecture was successfully tested on the Loihi neuromorphic processor on-board a quadrotor to estimate the attitude when flying. Our results show the robustness of neuromorphic attitude estimation and pave the way towards energy-efficient, fully autonomous control of quadrotors with dedicated neuromorphic computing systems

    Using Distributed Wearable Sensors to Measure and Evaluate Human Lower Limb Motions

    Get PDF
    This paper presents a wearable sensor approach to motion measurements of human lower limbs, in which subjects perform specified walking trials at self-administered speeds so that their level walking and stair ascent capacity can be effectively evaluated. After an initial sensor alignment with the reduced error, quaternion is used to represent 3-D orientation and an optimized gradient descent algorithm is deployed to calculate the quaternion derivative. Sensors on the shank offer additional information to accurately determine the instances of both swing and stance phases. The Denavit-Hartenberg convention is used to set up the kinematic chains when the foot stays stationary on the ground, producing state constraints to minimize the estimation error of knee position. The reliability of this system, from the measurement point of view, has been validated by means of the results obtained from a commercial motion tracking system, namely, Vicon, on healthy subjects. The step size error and the position estimation accuracy change are studied. The experimental results demonstrated that the extensively existed sensor misplacement and sensor drift problems can be well solved. The proposed self-contained and environment-independent system is capable of providing consistent tracking of human lower limbs without significant drift
    • …
    corecore