272 research outputs found

    Quaternion Information Theoretic Learning Adaptive Algorithms for Nonlinear Adaptive

    Get PDF
    Information Theoretic Learning (ITL) is gaining popularity for designing adaptive filters for a non-stationary or non-Gaussian environment [1] [2] . ITL cost functions such as the Minimum Error Entropy (MEE) have been applied to both linear and nonlinear adaptive filtering with better overall performance compared with the typical mean squared error (MSE) and least-squares type adaptive filtering, especially for nonlinear systems in higher-order statistic noise environments [3]. Quaternion valued data processing is beneficial in applications such as robotics and image processing, particularly for performing transformations in 3-dimensional space. Particularly the benefit for quaternion valued processing includes performing data transformations in a 3 or 4-dimensional space in a more convenient fashion than using vector algebra [4, 5, 6, 7, 8]. Adaptive filtering in quaterion domain operates intrinsically based on the augmented statistics which the quaternion input vector covariance is taken into account naturally and as a result it incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input [9]. The generalized Hamilton-real calculus (GHR) for the quaternion data simplified product and chain rules and allows us to calculate the gradient and Hessian of quaternion based cost function of the learning algorithms eciently [10][11] . The quaternion reproducing kernel Hilbert spaces and its uniqueness provide a mathematical foundation to develop the quaternion value kernel learning algorithms [12]. The reproducing property of the feature space replace the inner product of feature samples with kernel evaluation. In this dissertation, we first propose a kernel adaptive filter for quaternion data based on minimum error entropy cost function. The new algorithm is based on error entropy function and is referred to as the quaternion kernel minimum error entropy (QKMEE) algorithm [13]. We apply generalized Hamilton-real (GHR) calculus that is applicable to quaternion Hilbert space for evaluating the cost function gradient to develop the QKMEE algorithm. The minimum error entropy (MEE) algorithm [3, 14, 15] minimizes Renyis quadratic entropy of the error between the lter output and desired response or indirectly maximizing the error information potential. ITL methodology improves the performance of adaptive algorithm in biased or non-Gaussian signals and noise enviorments compared to the mean squared error (MSE) criterion algorithms such as the kernel least mean square algorithm. Second, we develop a kernel adaptive filter for quaternion data based on normalized minimum error entropy cost function [14]. We apply generalized Hamilton-real GHR) calculus that is applicable to Hilbert space for evaluating the cost function gradient to develop the quaternion kernel normalized minimum error entropy (QKNMEE) algorithm [16]. The new proposed algorithm enhanced QKMEE algorithm where the filter update stepsize selection will be independent of the input power and the kernel size. Third, we develop a kernel adaptive lter for quaternion domain data, based on information theoretic learning cost function which could be useful for quaternion based kernel applications of nonlinear filtering. The new algorithm is based on error entropy function with fiducial point and is referred to as the quaternion kernel minimum error entropy with fiducial point (QKMEEF) algorithm [17]. In our previous work we developed quaternion kernel adaptive lter based on minimum error entropy referred to as the QKMEE algorithm [13]. Since entropy does not change with the mean of the distribution, the algorithm may converge to a set of optimal weights without having zero mean error. Traditionally, to make the zero mean output error, the output during testing session was biased with the mean of errors of training session. However, for non-symmetric or heavy tails error PDF the estimation of error mean is problematic [18]. The minimum error entropy criterion, minimizes Renyi\u27s quadratic entropy of the error between the filter output and desired response or indirectly maximizing the error information potential [19]. Here, the approach is applied to quaternions. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus that is applicable to Hilbert space for evaluating the cost function gradient to develop the Quaternion Minimum Error Entropy Algorithm with Fiducial point. Simulation results are used to show the behavior of the new algorithm (QKMEEF) when signal is non-Gaussian in presence of unimodal noise versus bi-modal noise distributions. Simulation results also show that the new algorithm QKMEEF can track and predict the 4-Dimensional non-stationary process signals where there are correlations between components better than quadruple real-valued KMEEF and Quat-KLMS algorithms. Fourth, we develop a kernel adaptive filter for quaternion data, using stochastic information gradient (SIG) cost function based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG) is useful for quaternion-based kernel applications of nonlinear ltering [20]. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus that is applicable to quaternion Hilbert space for evaluating the cost function gradient. The QKSIG algorithm minimizes Shannon\u27s entropy of the error between the filter output and desired response and minimizes the divergence between the joint densities of input-desired and input-output pairs. The SIG technique reduces the computational complexity of the error entropy estimation. Here, ITL with SIG approach is applied to quaternion adaptive filtering for three different reasons. First, it reduces the algorithm computational complexity compared to our previous work quaternion kernel minimum error entropy algorithm (QKMEE). Second, it improves the filtering performance by considering the coupling within the dimensions of the quaternion input. Third, it performs better in biased or non-Gaussian signal and noise environments due to ITL approach. We present convergence analysis and steady-state performance analysis results of the new algorithm (QKSIG). Simulation results are used to show the behavior of the new algorithm QKSIG in quaternion non-Gaussian signal and noise environments compared to the existing ones such as quadruple real-valued kernel stochastic information gradient (KSIG) and quaternion kernel LMS (QKLMS) algorithms. Fifth, we develop a kernel adaptive filter for quaternion data, based on stochastic information gradient (SIG) cost function with self adjusting step-size. The new algorithm (QKSIG-SAS) is based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG-SAS) has faster speed of convergence as compared to our previous work QKSIG algorithm

    Controlled particle systems for nonlinear filtering and global optimization

    Get PDF
    This thesis is concerned with the development and applications of controlled interacting particle systems for nonlinear filtering and global optimization problems. These problems are important in a number of engineering domains. In nonlinear filtering, there is a growing interest to develop geometric approaches for systems that evolve on matrix Lie groups. Examples include the problem of attitude estimation and motion tracking in aerospace engineering, robotics and computer vision. In global optimization, the challenges typically arise from the presence of a large number of local minimizers as well as the computational scalability of the solution. Gradient-free algorithms are attractive because in many practical situations, evaluating the gradient of the objective function may be computationally prohibitive. The thesis comprises two parts that are devoted to theory and applications, respectively. The theoretical part consists of three chapters that describe methods and algorithms for nonlinear filtering, global optimization, and numerical solutions of the Poisson equation that arise in both filtering and optimization. For the nonlinear filtering problem, the main contribution is to extend the feedback particle filter (FPF) algorithm to connected matrix Lie groups. In its general form, the FPF is shown to provide an intrinsic coordinate-free description of the filter that automatically satisfies the manifold constraint. The properties of the original (Euclidean) FPF, especially the gain-times-error feedback structure, are preserved in the generalization. For the global optimization problem, a controlled particle filter algorithm is introduced to numerically approximate a solution of the global optimization problem. The theoretical significance of this work comes from its variational aspects: (i) the proposed particle filter is a controlled interacting particle system where the control input represents the solution of a mean-field type optimal control problem; and (ii) the associated density transport is shown to be a gradient flow (steepest descent) for the optimal value function, with respect to the Kullback--Leibler divergence. For both the nonlinear filtering and optimization problems, the numerical implementation of the proposed algorithms require a solution of a Poisson equation. Two numerical algorithms are described for this purpose. In the Galerkin scheme, the gain function is approximated using a set of pre-defined basis functions; In the kernel-based scheme, a numerical solution is obtained by solving a certain fixed-point equation. Well-posedness results for the Poisson equation are also discussed. The second part of the thesis contains applications of the proposed algorithms to specific nonlinear filtering and optimization problems. The FPF is applied to the problem of attitude estimation - a nonlinear filtering problem on the Lie group SO(3). The formulae of the filter are described using both the rotation matrix and the quaternion coordinates. A comparison is provided between FPF and the several popular attitude filters including the multiplicative EKF, the invariant EKF, the unscented Kalman filter, the invariant ensemble Kalman filter and the bootstrap particle filter. Numerical simulations are presented to illustrate the comparison. As a practical application, experimental results for a motion tracking problem are presented. The objective is to estimate the attitude of a wrist-worn motion sensor based on the motion of the arm. In the presence of motion, considered here as the swinging motion of the arm, the observability of the sensor attitude is shown to improve. The estimation problem is mathematically formulated as a nonlinear filtering problem on the product Lie group SO(3)XSO(2), and experimental results are described using data from the gyroscope and the accelerometer installed on the sensor. For the global optimization problem, the proposed controlled particle filter is compared with several model-based algorithms that also employ probabilistic models to inform the search of the global minimizer. Examples of the model-based algorithms include the model reference adaptive search, the cross entropy, the model-based evolutionary optimization, and two algorithms based on bootstrap particle filtering. Performance comparisons are provided between the control-based and the sampling-based implementation. Results of Monte-Carlo simulations are described for several benchmark optimization problems

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications
    • …
    corecore