21 research outputs found

    Multimodal Image Fusion and Its Applications.

    Full text link
    Image fusion integrates different modality images to provide comprehensive information of the image content, increasing interpretation capabilities and producing more reliable results. There are several advantages of combining multi-modal images, including improving geometric corrections, complementing data for improved classification, and enhancing features for analysis...etc. This thesis develops the image fusion idea in the context of two domains: material microscopy and biomedical imaging. The proposed methods include image modeling, image indexing, image segmentation, and image registration. The common theme behind all proposed methods is the use of complementary information from multi-modal images to achieve better registration, feature extraction, and detection performances. In material microscopy, we propose an anomaly-driven image fusion framework to perform the task of material microscopy image analysis and anomaly detection. This framework is based on a probabilistic model that enables us to index, process and characterize the data with systematic and well-developed statistical tools. In biomedical imaging, we focus on the multi-modal registration problem for functional MRI (fMRI) brain images which improves the performance of brain activation detection.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120701/1/yuhuic_1.pd

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Tracking space debris using directional statistics

    Get PDF
    One of the main concerns in space situational awareness is to keep track of the large number of space objects, including both satellites and debris, orbiting the earth. The state of an orbiting object indicates the position and velocity of the object and it is generally represented using a 6-dimensional state vector. Observations typically take the form of angles-only measurements from ground-based telescopes. 聽Two specific challenges are the tracking of objects and the association of objects. Ideas from the directional statistics can be used to tackle both of these challenges. There are two sets of contributions made in this thesis. The first set of contributions deals with the tracking of an orbiting object. In general, the filtering or tracking problem is simplest when the joint distribution of uncertainties in the state vector and the observation vector is normally distributed. 聽To achieve this goal, 聽the "Adapted STructural (AST)" coordinate system has been developed to describe the orbiting object and the measurements of the object. The propagated orbital uncertainty represented using the AST coordinate system is approximately Gaussian under a wide range of conditions and as a result this coordinate system is suitable for using a Kalman filter for tracking space objects. A comparative study has been performed to understand behavior of different non-linear Kalman filters. Further, two new Kalman filters, namely the Observation-Centered extended Kalman filter and Observation-Centered unscented Kalman filter, have been developed. Various uses of the AST coordinate system are described using suitable examples. The second set of contributions is related to the representation of the 2-dimensional uncertainty, associated with the angles-only position. The concept of the newly developed "Adapted Spherical (ASP)" coordinate system is described in detail. Several examples are provided to discuss the usefulness of the ASP coordinate system for solving association problems. In addition, limitations of the ASP coordinate system are also highlighted. Especially for a break-up event scenario, the propagated point cloud in the ASP coordinate system displays a "bow-tie" or "pinching" pattern when the propagation period is a close multiple of half orbital period. A new "Pinched-Normal (PN)" distribution has been developed to understand the reason. Finally, the distribution of the radial component is analyzed

    Graphical models for visual object recognition and tracking

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 277-301).We develop statistical methods which allow effective visual detection, categorization, and tracking of objects in complex scenes. Such computer vision systems must be robust to wide variations in object appearance, the often small size of training databases, and ambiguities induced by articulated or partially occluded objects. Graphical models provide a powerful framework for encoding the statistical structure of visual scenes, and developing corresponding learning and inference algorithms. In this thesis, we describe several models which integrate graphical representations with nonparametric statistical methods. This approach leads to inference algorithms which tractably recover high-dimensional, continuous object pose variations, and learning procedures which transfer knowledge among related recognition tasks. Motivated by visual tracking problems, we first develop a nonparametric extension of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide general procedures for recursively updating particle-based approximations of continuous sufficient statistics. Efficient multiscale sampling methods then allow this nonparametric BP algorithm to be flexibly adapted to many different applications.(cont.) As a particular example, we consider a graphical model describing the hand's three-dimensional (3D) structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D position and orientation of several rigid components, and thus exposes local structure in a high-dimensional articulated model. Applying nonparametric BP, we recover a hand tracking algorithm which is robust to outliers and local visual ambiguities. Via a set of latent occupancy masks, we also extend our approach to consistently infer occlusion events in a distributed fashion. In the second half of this thesis, we develop methods for learning hierarchical models of objects, the parts composing them, and the scenes surrounding them. Our approach couples topic models originally developed for text analysis with spatial transformations, and thus consistently accounts for geometric constraints. By building integrated scene models, we may discover contextual relationships, and better exploit partially labeled training images. We first consider images of isolated objects, and show that sharing parts among object categories improves accuracy when learning from few examples.(cont.) Turning to multiple object scenes, we propose nonparametric models which use Dirichlet processes to automatically learn the number of parts underlying each object category, and objects composing each scene. Adapting these transformed Dirichlet processes to images taken with a binocular stereo camera, we learn integrated, 3D models of object geometry and appearance. This leads to a Monte Carlo algorithm which automatically infers 3D scene structure from the predictable geometry of known object categories.by Erik B. Sudderth.Ph.D

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Generalisable FPCA-based Models for Predicting Peak Power in Vertical Jumping using Accelerometer Data

    Get PDF
    Peak power in the countermovement jump is correlated with various measures of sports performance and can be used to monitor athlete training. The gold standard method for determining peak power uses force platforms, but they are unsuitable for field-based testing favoured by practitioners. Alternatives include predicting peak power from jump flight times, or using Newtonian methods based on body-worn inertial sensor data, but so far neither has yielded sufficiently accurate estimates. This thesis aims to develop a generalisable model for predicting peak power based on Functional Principal Component Analysis applied to body-worn accelerometer data. Data was collected from 69 male and female adults, engaged in sports at recreational, club or national levels. They performed up to 16 countermovement jumps each, with and without arm swing, 696 jumps in total. Peak power criterion measures were obtained from force platforms, and characteristic features from accelerometer data were extracted from four sensors attached to the lower back, upper back and both shanks. The best machine learning algorithm, jump type and sensor anatomical location were determined in this context. The investigation considered signal representation (resultant, triaxial or a suitable transform), preprocessing (smoothing, time window and curve registration), feature selection and data augmentation (signal rotations and SMOTER). A novel procedure optimised the model parameters based on Particle Swarm applied to a surrogate Gaussian Process model. Model selection and evaluation were based on nested cross validation (Monte Carlo design). The final optimal model had an RMSE of 2.5 W路kg-1, which compares favourably to earlier research (4.9 卤 1.7 W路kg-1 for flight-time formulae and 10.7 卤 6.3 W路kg-1 for Newtonian sensor-based methods). Whilst this is not yet sufficiently accurate for applied practice, this thesis has developed and comprehensively evaluated new techniques, which will be valuable to future biomechanical applications
    corecore