94 research outputs found

    Quasipolynomial Set-Based Symbolic Algorithms for Parity Games

    Get PDF
    Solving parity games, which are equivalent to modal μ\mu-calculus model checking, is a central algorithmic problem in formal methods. Besides the standard computation model with the explicit representation of games, another important theoretical model of computation is that of set-based symbolic algorithms. Set-based symbolic algorithms use basic set operations and one-step predecessor operations on the implicit description of games, rather than the explicit representation. The significance of symbolic algorithms is that they provide scalable algorithms for large finite-state systems, as well as for infinite-state systems with finite quotient. Consider parity games on graphs with nn vertices and parity conditions with dd priorities. While there is a rich literature of explicit algorithms for parity games, the main results for set-based symbolic algorithms are as follows: (a) an algorithm that requires O(nd)O(n^d) symbolic operations and O(d)O(d) symbolic space; and (b) an improved algorithm that requires O(nd/3+1)O(n^{d/3+1}) symbolic operations and O(n)O(n) symbolic space. Our contributions are as follows: (1) We present a black-box set-based symbolic algorithm based on the explicit progress measure algorithm. Two important consequences of our algorithm are as follows: (a) a set-based symbolic algorithm for parity games that requires quasi-polynomially many symbolic operations and O(n)O(n) symbolic space; and (b) any future improvement in progress measure based explicit algorithms imply an efficiency improvement in our set-based symbolic algorithm for parity games. (2) We present a set-based symbolic algorithm that requires quasi-polynomially many symbolic operations and O(dlogn)O(d \cdot \log n) symbolic space. Moreover, for the important special case of dlognd \leq \log n, our algorithm requires only polynomially many symbolic operations and poly-logarithmic symbolic space.Comment: Published at LPAR-22 in 201

    Solving parity games: Explicit vs symbolic

    Get PDF
    In this paper we provide a broad investigation of the symbolic approach for solving Parity Games. Specifically, we implement in a fresh tool, called, four symbolic algorithms to solve Parity Games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been

    A Universal Attractor Decomposition Algorithm for Parity Games

    Full text link
    An attractor decomposition meta-algorithm for solving parity games is given that generalizes the classic McNaughton-Zielonka algorithm and its recent quasi-polynomial variants due to Parys (2019), and to Lehtinen, Schewe, and Wojtczak (2019). The central concepts studied and exploited are attractor decompositions of dominia in parity games and the ordered trees that describe the inductive structure of attractor decompositions. The main technical results include the embeddable decomposition theorem and the dominion separation theorem that together help establish a precise structural condition for the correctness of the universal algorithm: it suffices that the two ordered trees given to the algorithm as inputs embed the trees of some attractor decompositions of the largest dominia for each of the two players, respectively. The universal algorithm yields McNaughton-Zielonka, Parys's, and Lehtinen-Schewe-Wojtczak algorithms as special cases when suitable universal trees are given to it as inputs. The main technical results provide a unified proof of correctness and deep structural insights into those algorithms. A symbolic implementation of the universal algorithm is also given that improves the symbolic space complexity of solving parity games in quasi-polynomial time from O(dlgn)O(d \lg n)---achieved by Chatterjee, Dvo\v{r}\'{a}k, Henzinger, and Svozil (2018)---down to O(lgd)O(\lg d), where nn is the number of vertices and dd is the number of distinct priorities in a parity game. This not only exponentially improves the dependence on dd, but it also entirely removes the dependence on nn

    A Comparison of BDD-Based Parity Game Solvers

    Full text link
    Parity games are two player games with omega-winning conditions, played on finite graphs. Such games play an important role in verification, satisfiability and synthesis. It is therefore important to identify algorithms that can efficiently deal with large games that arise from such applications. In this paper, we describe our experiments with BDD-based implementations of four parity game solving algorithms, viz. Zielonka's recursive algorithm, the more recent Priority Promotion algorithm, the Fixpoint-Iteration algorithm and the automata based APT algorithm. We compare their performance on several types of random games and on a number of cases taken from the Keiren benchmark set.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    Symbolic Parity Game Solvers that Yield Winning Strategies

    Get PDF
    Parity games play an important role for LTL synthesis as evidenced by recent breakthroughs on LTL synthesis, which rely in part on parity game solving. Yet state space explosion remains a major issue if we want to scale to larger systems or specifications. In order to combat this problem, we need to investigate symbolic methods such as BDDs, which have been successful in the past to tackle exponentially large systems. It is therefore essential to have symbolic parity game solving algorithms, operating using BDDs, that are fast and that can produce the winning strategies used to synthesize the controller in LTL synthesis. Current symbolic parity game solving algorithms do not yield winning strategies. We now propose two symbolic algorithms that yield winning strategies, based on two recently proposed fixpoint algorithms. We implement the algorithms and empirically evaluate them using benchmarks obtained from SYNTCOMP 2020. Our conclusion is that the algorithms are competitive with or faster than an earlier symbolic implementation of Zielonka's recursive algorithm, while also providing the winning strategies.Comment: In Proceedings GandALF 2020, arXiv:2009.0936

    The Theory of Universal Graphs for Infinite Duration Games

    Full text link
    We introduce the notion of universal graphs as a tool for constructing algorithms solving games of infinite duration such as parity games and mean payoff games. In the first part we develop the theory of universal graphs, with two goals: showing an equivalence and normalisation result between different recently introduced related models, and constructing generic value iteration algorithms for any positionally determined objective. In the second part we give four applications: to parity games, to mean payoff games, and to combinations of them (in the form of disjunctions of objectives). For each of these four cases we construct algorithms achieving or improving over the best known time and space complexity.Comment: 43 pages, 10 figure

    Automating Resolution is NP-Hard

    Get PDF
    We show that the problem of finding a Resolution refutation that is at most polynomially longer than a shortest one is NP-hard. In the parlance of proof complexity, Resolution is not automatizable unless P = NP. Indeed, we show it is NP-hard to distinguish between formulas that have Resolution refutations of polynomial length and those that do not have subexponential length refutations. This also implies that Resolution is not automatizable in subexponential time or quasi-polynomial time unless NP is included in SUBEXP or QP, respectively

    A Recursive Approach to Solving Parity Games in Quasipolynomial Time

    Get PDF
    Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to nO(log(1+dlogn))n^{O\left(\log\left(1+\frac{d}{\log n}\right)\right)}, for parity games of size nn with dd priorities, in line with previous quasipolynomial-time solutions.</jats:p
    corecore