23 research outputs found

    Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity

    Get PDF
    Deterministic polynomial-time computation of a representation of a transversal matroid is a longstanding open problem. We present a deterministic computation of a so-called union representation of a transversal matroid in time quasipolynomial in the rank of the matroid. More precisely, we output a collection of linear matroids such that a set is independent in the transversal matroid if and only if it is independent in at least one of them. Our proof directly implies that if one is interested in preserving independent sets of size at most r, for a given rinmathbb{N}, but does not care whether larger independent sets are preserved, then a union representation can be computed deterministically in time quasipolynomial in r. This consequence is of independent interest, and sheds light on the power of union~representation. Our main result also has applications in Parameterized Complexity. First, it yields a fast computation of representative sets, and due to our relaxation in the context of r, this computation also extends to (standard) truncations. In turn, this computation enables to efficiently solve various problems, such as subcases of subgraph isomorphism, motif search and packing problems, in the presence of color lists. Such problems have been studied to model scenarios where pairs of elements to be matched may not be identical but only similar, and color lists aim to describe the set of compatible elements associated with each element

    Quasipolynomial multicut-mimicking networks and kernels for multiway cut problems

    Get PDF

    On Quasipolynomial Multicut-Mimicking Networks and Kernelization of Multiway Cut Problems

    Get PDF

    FPT-Algorithms for the l-Matchoid Problem with Linear and Submodular Objectives

    Full text link
    We design a fixed-parameter deterministic algorithm for computing a maximum weight feasible set under a \ell-matchoid of rank kk, parameterized by \ell and kk. Unlike previous work that presumes linear representativity of matroids, we consider the general oracle model. Our result, combined with the lower bounds of Lovasz, and Jensen and Korte, demonstrates a separation between the \ell-matchoid and the matroid \ell-parity problems in the setting of fixed-parameter tractability. Our algorithms are obtained by means of kernelization: we construct a small representative set which contains an optimal solution. Such a set gives us much flexibility in adapting to other settings, allowing us to optimize not only a linear function, but also several important submodular functions. It also helps to transform our algorithms into streaming algorithms. In the streaming setting, we show that we can find a feasible solution of value zz and the number of elements to be stored in memory depends only on zz and \ell but totally independent of nn. This shows that it is possible to circumvent the recent space lower bound of Feldman et al., by parameterizing the solution value. This result, combined with existing lower bounds, also provides a new separation between the space and time complexity of maximizing an arbitrary submodular function and a coverage function in the value oracle model

    Representative set statements for delta-matroids and the Mader delta-matroid

    Full text link
    We present representative sets-style statements for linear delta-matroids, which are set systems that generalize matroids, with important connections to matching theory and graph embeddings. Furthermore, our proof uses a new approach of sieving polynomial families, which generalizes the linear algebra approach of the representative sets lemma to a setting of bounded-degree polynomials. The representative sets statements for linear delta-matroids then follow by analyzing the Pfaffian of the skew-symmetric matrix representing the delta-matroid. Applying the same framework to the determinant instead of the Pfaffian recovers the representative sets lemma for linear matroids. Altogether, this significantly extends the toolbox available for kernelization. As an application, we show an exact sparsification result for Mader networks: Let G=(V,E)G=(V,E) be a graph and T\mathcal{T} a partition of a set of terminals TV(G)T \subseteq V(G), T=k|T|=k. A T\mathcal{T}-path in GG is a path with endpoints in distinct parts of T\mathcal{T} and internal vertices disjoint from TT. In polynomial time, we can derive a graph G=(V,E)G'=(V',E') with TV(G)T \subseteq V(G'), such that for every subset STS \subseteq T there is a packing of T\mathcal{T}-paths with endpoints SS in GG if and only if there is one in GG', and V(G)=O(k3)|V(G')|=O(k^3). This generalizes the (undirected version of the) cut-covering lemma, which corresponds to the case that T\mathcal{T} contains only two blocks. To prove the Mader network sparsification result, we furthermore define the class of Mader delta-matroids, and show that they have linear representations. This should be of independent interest

    Near-Linear-Time, Optimal Vertex Cut Sparsifiers in Directed Acyclic Graphs

    Get PDF

    Vertex Sparsification for Edge Connectivity in Polynomial Time

    Get PDF

    Determinantal Sieving

    Full text link
    We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial P(X)P(X) on a set of variables X={x1,,xn}X=\{x_1,\ldots,x_n\} and a linear matroid M=(X,I)M=(X,\mathcal{I}) of rank kk, both over a field F\mathbb{F} of characteristic 2, in 2k2^k evaluations we can sieve for those terms in the monomial expansion of PP which are multilinear and whose support is a basis for MM. Alternatively, using 2k2^k evaluations of PP we can sieve for those monomials whose odd support spans MM. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving qq-Matroid Intersection in time O(2(q2)k)O^*(2^{(q-2)k}) and qq-Matroid Parity in time O(2qk)O^*(2^{qk}), improving on O(4qk)O^*(4^{qk}) (Brand and Pratt, ICALP 2021) 2. TT-Cycle, Colourful (s,t)(s,t)-Path, Colourful (S,T)(S,T)-Linkage in undirected graphs, and the more general Rank kk (S,T)(S,T)-Linkage problem, all in O(2k)O^*(2^k) time, improving on O(2k+S)O^*(2^{k+|S|}) respectively O(2S+O(k2log(k+F)))O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))}) (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of rr solutions to a problem with a minimum mutual distance of dd in time O(2r(r1)d/2)O^*(2^{r(r-1)d/2}), improving solutions for kk-Distinct Branchings from time 2O(klogk)2^{O(k \log k)} to O(2k)O^*(2^k) (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from O(22O(rd))O^*(2^{2^{O(rd)}}) to O(2r2d/2)O^*(2^{r^2d/2}) (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2
    corecore