4,261 research outputs found

    Satisfiability is quasilinear complete in NQL

    Get PDF
    Considered are the classes QL (quasilinear) and NQL (nondet quasllmear) of all those problems that can be solved by deterministic (nondetermlnlsttc, respectively) Turmg machines in time O(n(log n) ~) for some k Effloent algorithms have time bounds of th~s type, it is argued. Many of the "exhausUve search" type problems such as satlsflablhty and colorabdlty are complete in NQL with respect to reductions that take O(n(log n) k) steps This lmphes that QL = NQL iff satisfiabdlty is m QL CR CATEGORIES: 5.2

    Hard Properties with (Very) Short PCPPs and Their Applications

    Get PDF
    We show that there exist properties that are maximally hard for testing, while still admitting PCPPs with a proof size very close to linear. Specifically, for every fixed ?, we construct a property P^(?)? {0,1}^n satisfying the following: Any testing algorithm for P^(?) requires ?(n) many queries, and yet P^(?) has a constant query PCPP whose proof size is O(n?log^(?)n), where log^(?) denotes the ? times iterated log function (e.g., log^(2)n = log log n). The best previously known upper bound on the PCPP proof size for a maximally hard to test property was O(n?polylog(n)). As an immediate application, we obtain stronger separations between the standard testing model and both the tolerant testing model and the erasure-resilient testing model: for every fixed ?, we construct a property that has a constant-query tester, but requires ?(n/log^(?)(n)) queries for every tolerant or erasure-resilient tester

    Source Coding for Quasiarithmetic Penalties

    Full text link
    Huffman coding finds a prefix code that minimizes mean codeword length for a given probability distribution over a finite number of items. Campbell generalized the Huffman problem to a family of problems in which the goal is to minimize not mean codeword length but rather a generalized mean known as a quasiarithmetic or quasilinear mean. Such generalized means have a number of diverse applications, including applications in queueing. Several quasiarithmetic-mean problems have novel simple redundancy bounds in terms of a generalized entropy. A related property involves the existence of optimal codes: For ``well-behaved'' cost functions, optimal codes always exist for (possibly infinite-alphabet) sources having finite generalized entropy. Solving finite instances of such problems is done by generalizing an algorithm for finding length-limited binary codes to a new algorithm for finding optimal binary codes for any quasiarithmetic mean with a convex cost function. This algorithm can be performed using quadratic time and linear space, and can be extended to other penalty functions, some of which are solvable with similar space and time complexity, and others of which are solvable with slightly greater complexity. This reduces the computational complexity of a problem involving minimum delay in a queue, allows combinations of previously considered problems to be optimized, and greatly expands the space of problems solvable in quadratic time and linear space. The algorithm can be extended for purposes such as breaking ties among possibly different optimal codes, as with bottom-merge Huffman coding.Comment: 22 pages, 3 figures, submitted to IEEE Trans. Inform. Theory, revised per suggestions of reader

    Improved Soundness for QMA with Multiple Provers

    Full text link
    We present three contributions to the understanding of QMA with multiple provers: 1) We give a tight soundness analysis of the protocol of [Blier and Tapp, ICQNM '09], yielding a soundness gap Omega(1/N^2). Our improvement is achieved without the use of an instance with a constant soundness gap (i.e., without using a PCP). 2) We give a tight soundness analysis of the protocol of [Chen and Drucker, ArXiV '10], thereby improving their result from a monolithic protocol where Theta(sqrt(N)) provers are needed in order to have any soundness gap, to a protocol with a smooth trade-off between the number of provers k and a soundness gap Omega(k^2/N), as long as k>=Omega(log N). (And, when k=Theta(sqrt(N)), we recover the original parameters of Chen and Drucker.) 3) We make progress towards an open question of [Aaronson et al., ToC '09] about what kinds of NP-complete problems are amenable to sublinear multiple-prover QMA protocols, by observing that a large class of such examples can easily be derived from results already in the PCP literature - namely, at least the languages recognized by a non-deterministic RAMs in quasilinear time.Comment: 24 pages; comments welcom
    • …
    corecore