77 research outputs found

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline which focuses on the study of discrete objects and their properties. The current workshop brought together researchers from diverse fields such as Extremal and Probabilistic Combinatorics, Discrete Geometry, Graph theory, Combiantorial Optimization and Algebraic Combinatorics for a fruitful interaction. New results, methods and developments and future challenges were discussed. This is a report on the meeting containing abstracts of the presentations and a summary of the problem session

    Combinatorics, Probability and Computing

    Get PDF
    One of the exciting phenomena in mathematics in recent years has been the widespread and surprisingly effective use of probabilistic methods in diverse areas. The probabilistic point of view has turned out to b

    Incorporating Weisfeiler-Leman into algorithms for group isomorphism

    Get PDF
    In this paper we combine many of the standard and more recent algebraic techniques for testing isomorphism of finite groups (GpI) with combinatorial techniques that have typically b

    Algorithmic and enumerative aspects of the Moser-Tardos distribution

    Full text link
    Moser & Tardos have developed a powerful algorithmic approach (henceforth "MT") to the Lovasz Local Lemma (LLL); the basic operation done in MT and its variants is a search for "bad" events in a current configuration. In the initial stage of MT, the variables are set independently. We examine the distributions on these variables which arise during intermediate stages of MT. We show that these configurations have a more or less "random" form, building further on the "MT-distribution" concept of Haeupler et al. in understanding the (intermediate and) output distribution of MT. This has a variety of algorithmic applications; the most important is that bad events can be found relatively quickly, improving upon MT across the complexity spectrum: it makes some polynomial-time algorithms sub-linear (e.g., for Latin transversals, which are of basic combinatorial interest), gives lower-degree polynomial run-times in some settings, transforms certain super-polynomial-time algorithms into polynomial-time ones, and leads to Las Vegas algorithms for some coloring problems for which only Monte Carlo algorithms were known. We show that in certain conditions when the LLL condition is violated, a variant of the MT algorithm can still produce a distribution which avoids most of the bad events. We show in some cases this MT variant can run faster than the original MT algorithm itself, and develop the first-known criterion for the case of the asymmetric LLL. This can be used to find partial Latin transversals -- improving upon earlier bounds of Stein (1975) -- among other applications. We furthermore give applications in enumeration, showing that most applications (where we aim for all or most of the bad events to be avoided) have many more solutions than known before by proving that the MT-distribution has "large" min-entropy and hence that its support-size is large

    Discrete Geometry

    Get PDF
    A number of important recent developments in various branches of discrete geometry were presented at the workshop. The presentations illustrated both the diversity of the area and its strong connections to other fields of mathematics such as topology, combinatorics or algebraic geometry. The open questions abound and many of the results presented were obtained by young researchers, confirming the great vitality of discrete geometry

    Graph Theory

    Get PDF
    This workshop focused on recent developments in graph theory. These included in particular recent breakthroughs on nowhere-zero flows in graphs, width parameters, applications of graph sparsity in algorithms, and matroid structure results

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions
    corecore