55 research outputs found

    Adaptive Algorithms

    Get PDF
    Overwhelming empirical evidence in computational science and engineering proved that self-adaptive mesh-generation is a must-do in real-life problem computational partial differential equations. The mathematical understanding of corresponding algorithms concerns the overlap of two traditional mathematical disciplines, numerical analysis and approximation theory, with computational sciences. The half workshop was devoted to the mathematics of optimal convergence rates and instance optimality of the Dörfler marking or the maximum strategy in various versions of space discretisations and time-evolution problems with all kind of applications in the efficient numerical treatment of partial differential equations

    High-Order AFEM for the Laplace-Beltrami Operator: Convergence Rates

    Get PDF
    We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W1W^1_\infty and piecewise in a suitable Besov class embedded in C1,αC^{1,\alpha} with α(0,1]\alpha \in (0,1]. The idea is to have the surface sufficiently well resolved in W1W^1_\infty relative to the current resolution of the PDE in H1H^1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W1W^1_\infty and PDE error in H1H^1.Comment: 51 pages, the published version contains an additional glossar

    Adaptive Numerical Methods for PDEs

    Get PDF
    This collection contains the extended abstracts of the talks given at the Oberwolfach Conference on “Adaptive Numerical Methods for PDEs”, June 10th - June 16th, 2007. These talks covered various aspects of a posteriori error estimation and mesh as well as model adaptation in solving partial differential equations. The topics ranged from the theoretical convergence analysis of self-adaptive methods, over the derivation of a posteriori error estimates for the finite element Galerkin discretization of various types of problems to the practical implementation and application of adaptive methods

    Convergence of an adaptive mixed finite element method for general second order linear elliptic problems

    Full text link
    The convergence of an adaptive mixed finite element method for general second order linear elliptic problems defined on simply connected bounded polygonal domains is analyzed in this paper. The main difficulties in the analysis are posed by the non-symmetric and indefinite form of the problem along with the lack of the orthogonality property in mixed finite element methods. The important tools in the analysis are a posteriori error estimators, quasi-orthogonality property and quasi-discrete reliability established using representation formula for the lowest-order Raviart-Thomas solution in terms of the Crouzeix-Raviart solution of the problem. An adaptive marking in each step for the local refinement is based on the edge residual and volume residual terms of the a posteriori estimator. Numerical experiments confirm the theoretical analysis.Comment: 24 pages, 8 figure

    Adaptive SDE based interpolation for random PDEs

    Get PDF
    A numerical method for the fully adaptive sampling and interpolation of PDE with random data is presented. It is based on the idea that the solution of the PDE with stochastic data can be represented as conditional expectation of a functional of a corresponding stochastic differential equation (SDE). The physical domain is decomposed subject to a non-uniform grid and a classical Euler scheme is employed to approximately solve the SDE at grid vertices. Interpolation with a conforming finite element basis is employed to reconstruct a global solution of the problem. An a posteriori error estimator is introduced which provides a measure of the different error contributions. This facilitates the formulation of an adaptive algorithm to control the overall error by either reducing the stochastic error by locally evaluating more samples, or the approximation error by locally refining the underlying mesh. Numerical examples illustrate the performance of the presented novel method
    corecore