83 research outputs found

    B-spline-like bases for C2C^2 cubics on the Powell-Sabin 12-split

    Get PDF
    For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a B\'ezier-like manner. In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for C0C^0-, C1C^1-, and C2C^2-smoothness are derived

    Multivariate Splines and Algebraic Geometry

    Get PDF
    Multivariate splines are effective tools in numerical analysis and approximation theory. Despite an extensive literature on the subject, there remain open questions in finding their dimension, constructing local bases, and determining their approximation power. Much of what is currently known was developed by numerical analysts, using classical methods, in particular the so-called Bernstein-BÂŽezier techniques. Due to their many interesting structural properties, splines have become of keen interest to researchers in commutative and homological algebra and algebraic geometry. Unfortunately, these communities have not collaborated much. The purpose of the half-size workshop is to intensify the interaction between the different groups by bringing them together. This could lead to essential breakthroughs on several of the above problems

    Adaptive isogeometric analysis with hierarchical box splines

    Get PDF
    Isogeometric analysis is a recently developed framework based on finite element analysis, where the simple building blocks in geometry and solution space are replaced by more complex and geometrically-oriented compounds. Box splines are an established tool to model complex geometry, and form an intermediate approach between classical tensor-product B-splines and splines over triangulations. Local refinement can be achieved by considering hierarchically nested sequences of box spline spaces. Since box splines do not offer special elements to impose boundary conditions for the numerical solution of partial differential equations (PDEs), we discuss a weak treatment of such boundary conditions. Along the domain boundary, an appropriate domain strip is introduced to enforce the boundary conditions in a weak sense. The thickness of the strip is adaptively defined in order to avoid unnecessary computations. Numerical examples show the optimal convergence rate of box splines and their hierarchical variants for the solution of PDEs

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Energy conservation during remeshing in the analysis of dynamic fracture

    Get PDF
    The analysis of (dynamic) fracture often requires multiple changes to the discretisation during crack propagation. The state vector from the previous time step must then be transferred to provide the initial values of the next time step. A novel methodology based on a least‐squares fit is proposed for this mapping. The energy balance is taken as a constraint in the mapping, which results in a complete energy preservation. Apart from capturing the physics better, this also has advantages for numerical stability. To further improve the accuracy, Powell‐Sabin B‐splines, which are based on triangles, have been used for the discretisation. Since urn:x-wiley:nme:media:nme6142:nme6142-math-0001 continuity of the displacement field holds at crack tips for Powell‐Sabin B‐splines, the stresses at and around crack tips are captured much more accurately than when using elements with a standard Lagrangian interpolation, or with NURBS and T‐splines. The versatility and accuracy of the approach to simulate dynamic crack propagation are assessed in two case studies, featuring mode‐I and mixed‐mode crack propagation

    A geometrically exact isogeometric Kirchhoff plate: Feature‐preserving automatic meshing and C1 rational triangular BĂ©zier spline discretizations

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144603/1/nme5809.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144603/2/nme5809_am.pd
    • 

    corecore