1,088 research outputs found

    Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies

    Get PDF
    A systematic search of the research literature from 1996 through July 2008 identified more than a thousand empirical studies of online learning. Analysts screened these studies to find those that (a) contrasted an online to a face-to-face condition, (b) measured student learning outcomes, (c) used a rigorous research design, and (d) provided adequate information to calculate an effect size. As a result of this screening, 51 independent effects were identified that could be subjected to meta-analysis. The meta-analysis found that, on average, students in online learning conditions performed better than those receiving face-to-face instruction. The difference between student outcomes for online and face-to-face classes—measured as the difference between treatment and control means, divided by the pooled standard deviation—was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. Analysts noted that these blended conditions often included additional learning time and instructional elements not received by students in control conditions. This finding suggests that the positive effects associated with blended learning should not be attributed to the media, per se. An unexpected finding was the small number of rigorous published studies contrasting online and face-to-face learning conditions for K–12 students. In light of this small corpus, caution is required in generalizing to the K–12 population because the results are derived for the most part from studies in other settings (e.g., medical training, higher education)

    Isotropic Reconstruction of Neural Morphology from Large Non-Isotropic 3D Electron Microscopy

    Get PDF
    Neuroscientists are increasingly convinced that it is necessary to reconstruct the precise wiring and synaptic connectivity of biological nervous systems to eventually decipher their function. The urge to reconstruct ever larger and more complete synaptic wiring diagrams of animal brains has created an entire new subfield of neuroscience: Connectomics. The reconstruction of connectomes is difficult because neurons are both large and small. They project across distances of many millimeters but each individual neurite can be as thin as a few tens of nanomaters. In order to reconstruct all neurites in densely packed neural tissues, it is necessary to image this tissue at nanometer resolution which, today, is only possible with 3D electron microscopy (3D-EM). Over the last decade, 3D-EM has become significantly more reliable than ever before. Today, it is possible to routinely image volumes of up to a cubic millimeter, covering the entire brain of small model organisms such as that of the fruit fly Drosophila melanogaster. These volumes contain tens or hundreds of tera-voxels and cannot be analyzed manually. Efficient computational methods and tools are needed for all stages of connectome reconstruction: (1) assembling distortion and artifact free volumes from serial section EM, (2) precise automatic recon- struction of neurons and synapses, and (3) efficient and user-friendly solutions for visualization and interactive proofreading. In this dissertation, I present new computational methods and tools that I developed to address previously unsolved problems covering all of the above mentioned aspects of EM connectomics. In chapter 2, I present a new method to correct for planar and non-planar axial distortion and to sort unordered section series. This method was instrumental for the first ever acquisition of a complete brain of an adult Drosophila melanogaster imaged with 3D-EM. Machine learning, in particular deep learning, and the availability of public training and test data has had tremendous impact on the automatic reconstruction of neurons and synapses from 3D-EM. In chapter 3, I present a novel artificial neural network architecture that predicts neuron boundaries at quasi-isotropic resolution from non-isotropic 3D-EM. The goal is to create a high-quality over- segmentation with large three-dimensional fragments for faster manual proof- reading. In chapter 4, I present software libraries and tools that I developed to support the processing, visualization, and analysis of large 3D-EM data and connectome reconstructions. Using this software, we generated the largest currently existing training and test data for connectome reconstruction from non-isotropic 3D-EM. I will particularly emphasize my flexible interactive proof-reading tool Paintera that I built on top of the libraries and tools that I have developed over the last four years

    FACING EXPERIENCE: A PAINTER’S CANVAS IN VIRTUAL REALITY

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This research investigates how shifts in perception might be brought about through the development of visual imagery created by the use of virtual environment technology. Through a discussion of historical uses of immersion in art, this thesis will explore how immersion functions and why immersion has been a goal for artists throughout history. It begins with a discussion of ancient cave drawings and the relevance of Plato’s Allegory of the Cave. Next it examines the biological origins of “making special.” The research will discuss how this concept, combined with the ideas of “action” and “reaction,” has reinforced the view that art is fundamentally experiential rather than static. The research emphasizes how present-day virtual environment art, in providing a space that engages visitors in computer graphics, expands on previous immersive artistic practices. The thesis examines the technical context in which the research occurs by briefly describing the use of computer science technologies, the fundamentals of visual arts practices, and the importance of aesthetics in new media and provides a description of my artistic practice. The aim is to investigate how combining these approaches can enhance virtual environments as artworks. The computer science of virtual environments includes both hardware and software programming. The resultant virtual environment experiences are technologically dependent on the types of visual displays being used, including screens and monitors, and their subsequent viewing affordances. Virtual environments fill the field of view and can be experienced with a head mounted display (HMD) or a large screen display. The sense of immersion gained through the experience depends on how tracking devices and related peripheral devices are used to facilitate interaction. The thesis discusses visual arts practices with a focus on how illusions shift our cognition and perception in the visual modalities. This discussion includes how perceptual thinking is the foundation of art experiences, how analogies are the foundation of cognitive experiences and how the two intertwine in art experiences for virtual environments. An examination of the aesthetic strategies used by artists and new media critics are presented to discuss new media art. This thesis investigates the visual elements used in virtual environments and prescribes strategies for creating art for virtual environments. Methods constituting a unique virtual environment practice that focuses on visual analogies are discussed. The artistic practice that is discussed as the basis for this research also concentrates on experiential moments and shifts in perception and cognition and references Douglas Hofstadter, Rudolf Arnheim and John Dewey. iv Virtual environments provide for experiences in which the imagery generated updates in real time. Following an analysis of existing artwork and critical writing relative to the field, the process of inquiry has required the creation of artworks that involve tracking systems, projection displays, sound work, and an understanding of the importance of the visitor. In practice, the research has shown that the visitor should be seen as an interlocutor, interacting from a first-person perspective with virtual environment events, where avatars or other instrumental intermediaries, such as guns, vehicles, or menu systems, do not to occlude the view. The aesthetic outcomes of this research are the result of combining visual analogies, real time interactive animation, and operatic performance in immersive space. The environments designed in this research were informed initially by paintings created with imagery generated in a hypnopompic state or during the moments of transitioning from sleeping to waking. The drawings often emphasize emotional moments as caricatures and/or elements of the face as seen from a number of perspectives simultaneously, in the way of some cartoons, primitive artwork or Cubist imagery. In the imagery, the faces indicate situations, emotions and confrontations which can offer moments of humour and reflective exploration. At times, the faces usurp the space and stand in representation as both face and figure. The power of the placement of the caricatures in the paintings become apparent as the imagery stages the expressive moment. The placement of faces sets the scene, establishes relationships and promotes the honesty and emotions that develop over time as the paintings are scrutinized. The development process of creating virtual environment imagery starts with hand drawn sketches of characters, develops further as paintings on “digital canvas”, are built as animated, three-dimensional models and finally incorporated into a virtual environment. The imagery is generated while drawing, typically with paper and pencil, in a stream of consciousness during the hypnopompic state. This method became an aesthetic strategy for producing a snappy straightforward sketch. The sketches are explored further as they are worked up as paintings. During the painting process, the figures become fleshed out and their placement on the page, in essence brings them to life. These characters inhabit a world that I explore even further by building them into three dimensional models and placing them in computer generated virtual environments. The methodology of developing and placing the faces/figures became an operational strategy for building virtual environments. In order to open up the range of art virtual environments, and develop operational strategies for visitors’ experience, the characters and their facial features are used as navigational strategies, signposts and methods of wayfinding in order to sustain a stream of consciousness type of navigation. Faces and characters were designed to represent those intimate moments of self-reflection and confrontation that occur daily within ourselves and with others. They sought to reflect moments of wonderment, hurt, curiosity and humour that could subsequently be relinquished for more practical or purposeful endeavours. They were intended to create conditions in which visitors might reflect upon their emotional state, v enabling their understanding and trust of their personal space, in which decisions are made and the nature of world is determined. In order to extend the split-second, frozen moment of recognition that a painting affords, the caricatures and their scenes are given new dimensions as they become characters in a performative virtual reality. Emotables, distinct from avatars, are characters confronting visitors in the virtual environment to engage them in an interactive, stream of consciousness, non-linear dialogue. Visitors are also situated with a role in a virtual world, where they were required to adapt to the language of the environment in order to progress through the dynamics of a drama. The research showed that imagery created in a context of whimsy and fantasy could bring ontological meaning and aesthetic experience into the interactive environment, such that emotables or facially expressive computer graphic characters could be seen as another brushstroke in painting a world of virtual reality

    Acta Cybernetica : Volume 17. Number 2.

    Get PDF

    A Review of the Teaching and Learning on Power Electronics Course

    Get PDF
    —In this review, we describe various kinds of problem and solution related teaching and learning on power electronics course all around the world. The method was used the study of literature on journal articles and proceedings published by reputable international organizations. Thirtynine papers were obtained using Boolean operators, according to the specified criteria. The results of the problems generally established that student learning motivation was low, teaching approaches that are still teacher-centered, the scope of the curriculum extends, and the physical limitations of laboratory equipment. The solutions offered are very diverse ranging from models, strategies, methods and learning techniques supported by information and communication technology

    Cognitive Foundations for Visual Analytics

    Full text link

    Illustrator as detective: Discovery through drawing

    Get PDF
    I am an illustrator and I have produced an innovative drawing project with the Museum of East Asian Art, Bath, that interrogates concepts of illustration and illustrator as visionary.The majority of the museum’s collection consists of small-scale objects and miniatures, showcasing centuries of traditional craftsmanship and artistry. The museum holds a collection of ceramics, jades, bronzes and other artefacts from China, Japan, Korea and Southeast Asia. It is the only museum in the UK solely dedicated to arts and cultures of East and Southeast Asia.In producing this project, I act as a visionary, through exploring drawing as a tool for looking beyond the obvious, to truly study and discover an exotic object within a museum collection. The project explores ideas of future thinking in educational and professional developments, as the drawings will act as functional and democratic means to communicate my personal response to objects, and in turn challenge personal and studied responses from the public.Future thinking in educational and professional developments is also explored through the showcase of work, as drawings will be displayed in cabinets in direct juxtaposition with corresponding objects, and exhibited between different galleries

    Integrated multimodal interaction framework for virtual reality foot reflexology stress therapy

    Get PDF
    Frameworks in interaction research have seen varying compositions from numerous researchers, and have been applied for either a specific or general purposes in several domains. Previous studies have highlighted virtual reality (VR) in stress therapy, and revealed the potential of foot reflexology therapy using VR technology. However, the interaction framework for foot reflexology through virtual reality requires further investigation. This study presents the design and evaluation of an integrated multimodal interaction framework for virtual reality foot reflexology stress therapy. The components of the proposed framework were identified from the literature review and previous research, which included design principles, technology, structural components, multimodal interaction architecture, and segment composition. This formed the proposed integrated multimodal interaction framework for virtual reality foot reflexology stress therapy. The proposed framework was then validated using expert reviews. This was followed by prototype development, which explored the effectiveness of the virtual reality foot reflexology therapy application on relaxation and stress relief using Smith Relaxation States Inventory (SRSI-3). A pre and post-test intervention quasi experiment was employed in the study for the evaluation. The findings revealed that Virtual Reality Foot Reflexology Stress Therapy (VR–FRST) effectively evokes the relaxation state categories of transcendence, mindfulness, positive energy, and basic relaxation, and also reduces users stress state. This research provides a concise, organized, practical and validated integrated multimodal interaction framework for the design and development of foot reflexology therapy in a virtual environment. This contributes to the field of interaction design for virtual reality developers and complementary therapy for the alternative medical practitioners

    Health State Estimation

    Full text link
    Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.Comment: Ph.D. Dissertation @ University of California, Irvin
    • …
    corecore