1,117 research outputs found

    Development of a Novel Impedance-Controlled Quasi-Direct-Drive Robot Hand

    Full text link
    Most robotic hands and grippers rely on actuators with large gearboxes and force sensors for controlling gripping force. However, this might not be ideal for tasks which require the robot to interact with an unstructured and/or unknown environment. We propose a novel quasi-direct-drive two-fingered robotic hand with variable impedance control in the joint space and Cartesian space. The hand has a total of four degrees of freedom, a backdrivable gear train, and four brushless direct current (BLDC) motors. Field-Oriented Control (FOC) with current sensing is used to control motor torques. Variable impedance control allows the hand to perform dexterous manipulation tasks while being safe during human-robot interaction. The quasi-direct-drive actuators enable the fingers to handle contact with the environment without the need for complicated tactile or force sensors. A majority 3D printed assembly makes this a low-cost research platform built with affordable off-the-shelf components. The hand demonstrates grasping with force-closure and form-closure, stable grasps in response to disturbances, tasks exploiting contact with the environment, simple in-hand manipulation, and a light touch for handling fragile objects.Comment: 75 pages, A Thesis in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering at Stony Brook Universit

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Robotic manipulation with flexible link fingers

    Get PDF
    A robot manipulator is a spatial mechanism consisting essentially of a series of bodies, called "links", connected to each other at "joints". The joints can be of various types: revolute, rotary, planar, prismatic, telescopic or combinations of these. A serial connection of the links results in an open-chain manipulator. Closed-chain manipulators result from non-serial (or parallel) connections between links. Actuators at the joints of the manipulator provide power for motion. A robot is usually not designed for a very specific or repetitive task which can be done equally well by task-specific machines. Its strength lies in its ability to handle a range of tasks by virtue of being "re-programmable". Therefore, in addition to the mechanical hardware two other elements are integral to the description of a robot: sensors and control. With the advent of micro-electronics and digital computers the availability of sensors is ever increasing and the control is usually done by software executed by computers which also collect the sensory data. It is possible to model quite accurately, the dynamics of robot manipulators for purposes of control. However, for most practical robots the models are complex and numerically intensive to calculate in real-time. Traditional analyses of robot manipulators consider the whole mechanism to be rigid. Relaxation of the assumption of rigidity leads to further complication of the dynamics of the manipulator, leading to more difficulties in control. The overall motion of the manipulator is augmented by additional motion due to the dynamics of flexibility which must be considered. Sensing is also made more difficult. However, the ability to control robots with significant structural flexibilities, referred to as flexible robots in the rest of this thesis, influences robotics in many ways. It allows for consideration of new applications, observance of less conservative structural design and performance enhancements in certain classes of robotic tasks, which will be addressed in greater detail in the sections which follow

    Machine Systems for Exploration and Manipulation: A Conceptual Framework and Method of Evaluation

    Get PDF
    A conceptual approach to describing and evaluating problem-solving by robotic systems is offered. One particular problem of importance to the field of robotics, disassembly, is considered. A general description is provided of an effector system equipped with sensors that interacts with objects for purposes of disassembly and that learns as a result. The system\u27s approach is bottom up, in that it has no a priori knowledge about object categories. It does, however, have pre-existing methods and strategies for exploration and manipulation. The sensors assumed to be present are vision, proximity, tactile, position, force, and thermal. The system\u27s capabilities are described with respect to two phases: object exploration and manipulation. Exploration takes the form of executing exploratory procedures, algorithms for determining the substance, structure, and mechanical properties of objects. Manipulation involves manipulatory operators, defined by the type of motion, nature of the end-effector configuration, and precise parameterization. The relation of the hypothesized system to existing implementations is described, and a means of evaluating it is also proposed
    • …
    corecore