237 research outputs found

    An enhanced approach to virtually increase quasi-stationarity regions within geometric channel models for vehicular communications

    Get PDF
    Vehicular communication channels are intrinsically non-stationary, as they present high mobility and abundant dynamic scatterers. Quasi-stationary regions can assess the degree of non-stationarity within a determined scenario and time variant observation of the channel can be extracted. These regions can aid geometrical models as to increase channel sampling intervals or to develop hybrid stochastic-geometric channel models. In this work, a new methodology for the use of virtual quasi-stationary regions within geometric channel models is proposed, in order to leverage the inherent location information to virtually increase their size. Overall, the use of delay-shifted channel responses improves the mean correlation coefficient between consecutive locations, ultimately reducing computation time for time-variant geometric channel models.The authors wish to acknowledge the support received under Grant RYC2021-031949-I, funded by MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR; and under Grant PID2021-127409OB-C31, funded by MCIU/AEI/FEDER, UE

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    Millimeter wave radio channels: properties, multipath modeling and simulations

    Get PDF
    Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modeling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, millimeter wave (mmWave) system properties such as a high antenna directivity and system bandwidth are shown to have a great influence on the channel model definition. In this thesis, a fundamental assumption made in the state-of-the-art millimeter wave wireless channel models is challenged. It has been shown that Rayleigh-Rice fading assumption made in the state-of-the-art channel models for resolvable channel taps does not remain valid. This is mainly due to the sparse multipath illumination caused by high antenna directivity and high bandwidth of a mmWave system.Studies presented in this thesis are based on the characterization of realistic radio channels obtained from exhaustive channel sounding campaigns. Mainly, three fundamental problems of wireless channel modelling have been investigated for millimetre wave (mmWave) radio channel modelling application, namely (i) Frequency dependence of propagation, (ii) Impact of antenna directivity on the channel model definition, and (iii) Impact of system bandwidth on the radio channel modelling. A detailed description of these problems is as follows: (i) Frequency Dependence of Propagation. Multi-band measurement campaigns arecarried out using directional antennas which do an omni-directional scan of the propagation environment. During the measurements, Tx-Rx systems are placed at fixed positions and the propagation environment remained as static as possible. Using synthesized omni-directional power delay profiles (PDPs), we aim to investigate if there exists a frequency dependency in the multipath dispersion statistics, e.g. delay and angular spreads. (ii) Impact of Antenna Directivity on the Channel Model Definition. Small-scale fading measurements are carried out which emulate a scenario, where a radio communication link is established through a single multipath cluster which is illuminated using antennas with different Half Power Beam Widths (HPBW). The major goal here is to investigate the impact of spatial multipath filtering on the small-scale fading due to high antenna directivity. In particular, the impact on variations in the receive signal strength and the validity of narrowband wide-sense stationary assumption (both in time and frequency domains) is investigated. (iii) Impact of System Bandwidth on the Radio Channel Modelling. Small-scale fading measurements are used to illuminate multipath clusters in a lecture room scenario. The primary objective is to investigate the impact of high system bandwidth on variations in the receive signal strength, randomness in the cross-polarization power ratio (XPR) and richness of the multipath scattering. Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modelling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, mmWave system properties such as a high antenna directivity and system bandwidth are shown to have a high influence on the channel model definition. In general, fade depth scaling as a function of system bandwidth is quite well understood. We demonstrate that, the high antenna directivity of mmWave systems result in a further reduction in the fading depth. In addition, we explore some new directions to this line of research which are based on the second-order statistical analysis of the channel impulse response (CIR) vector. Our results emphasize that, fading statistics of resolvable channel taps in a mmWave radio channel cannot be modelled as Rayleigh-Rice distributed random variables. This is primarily due to the fact that channels with sparse scattering conditions are illuminated due to high antenna directivity and bandwidth of mmWave systems. Consequently, the complex Gaussian random variable assumption associated with Rayleigh-Rice fading distributions does not remain valid. Further, it has been demonstrated that, high antenna directivity and bandwidth of mmWave systems also raise a question mark on the validity of wide-sense stationary (WSS) assumption in the slow-time domain of mmWave radio channels. Results presented in this contribution are novel and they provide theoretically consistent insights into the measured radio channel.In dieser Arbeit werden drei grundlegende Probleme der Modellierung von Drahtloskanalen fur die Anwendung bei der Funkkanalmodellierung im Millimeterwellenbereich (mmWave) untersucht, namlich (i) die Frequenzabhangigkeit der Ausbreitung, (ii) der Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells und (iii) der Einfluss der Systembandbreite auf die Funkkanalmodellierung. Die detaillierte Beschreibung dieser Probleme lautet wie folgt: (i) Frequenzabhangigkeit der Ausbreitung. Mehrband-Messkampagnen werden mitRichtantennen durchgefuhrt, die eine omnidirektionale Abtastung der Ausbreitungsumgebung vornehmen. Wahrend der Messungen werden die Tx-Rx-Systeme an festen Positionen platziert und die Ausbreitungsumgebung bleibt so statisch wie moglich. Mit Hilfe von synthetisierten omnidirektionalen Verzogerungs-Leistungsprofilen soll untersucht werden, ob es eine Frequenzabhangigkeit in der Mehrwegeausbreitungsstatistik gibt, z.B. in der Verzogerung und der Winkelspreizung. (ii) Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells. Es werden Messungen des schnellen Schwunds durchgefuhrt, die ein Szenario emulieren, bei dem eine Funkverbindung uber ein einzelnes Mehrwege-Cluster aufgebaut wird, das mit Antennen mit unterschiedlichen Strahlbreiten ausgeleuchtet wird. Das Hauptzielist hier die Untersuchung des Einflusses der raumlichen Filterung auf den schnellen Schwund aufgrund der hohen Antennenrichtwirkung. Insbesondere wird die Auswirkung auf Variationen der Empfangssignalstarke und die Gultigkeit der Annahme der schmalbandigen Stationaritat im weiteren Sinne (sowohl im Zeit- als auch im Frequenzbereich) untersucht. (iii) Einfluss der Systembandbreite auf die Funkkanalmodellierung. Messungen desschnellen Schwunds werden verwendet, um Mehrwege-Cluster in einem Horsaal-Szenario auszuleuchten. Das primare Ziel ist es, den Einfluss einer hohen Systembandbreite auf die Variationen der Empfangssignalstarke, die Zufalligkeit des Kreuzpolarisationsverhaltnisses und die Reichhaltigkeit der Mehrwegstreuung zu untersuchen. Basierend auf der Charakterisierung realistischer Funkkanäle führen die in dieser Dissertation vorgestellten Ergebnisse zu dem Verständnis, dass beim Ubergang zu höheren Frequenzen die Frequenz x selbst keine signifikante Rolle bei der Definition der Kanalmodellierungsmethodik spielt. Vielmehr ist es von grundlegender Bedeutung, wie ein Ausbreitungskanal ausgeleuchtet wird. Daher zeigt sich, dass mmWave-Systemeigenschaften wie eine hohe Antennenrichtcharakteristik und Systembandbreite einen hohen Einfluss auf die Definition des Kanalmodells haben. Im Allgemeinen ist die Skalierung der Schwundtiefe als Funktion der Systembandbreite ziemlich gut verstanden. Wir zeigen, dass die hohe Antennenrichtwirkung von mmWave-Systemen zu einer weiteren Reduzierung der Schwundtiefe führt. Zusätzlich erforschen wir einige neue Richtungen in diesem Forschungsbereich, die auf der Analyse der Statistik zweiter Ordnung des Kanalimpulsantwort-Vektors basieren. Unsere Ergebnisse unterstreichen, dass die Schwund-Statistiken der auflösbaren Kanalabgriffe in einem mmWave-Funkkanal nicht als Rayleigh-Rice-verteilte Zufallsvariablen modelliert werden können. Dies liegt vor allem daran, dass durch die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen Kanale mit spärlichen Streubedingungen ausgeleuchtet werden. Folglich ist die Annahme komplexer Gaus’scher Zufallsvariablen, die mit Rayleigh-Rice Schwundverteilungen verbunden ist, nicht mehr gültig. Des Weiteren wird gezeigt, dass die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen auch die Gültigkeit der Annahme von Stationarität im weiteren Sinne im Slow-Time-Bereich von mmWave-Funkkanälen in Frage stellt. Die in diesem Beitrag vorgestellten Ergebnisse sind neuartig und bieten theoretisch konsistente Einblicke in den gemessenen Funkkanal

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Statistical millimeter wave channel modelling for 5G and beyond

    Get PDF
    Millimetre wave (mmWave) wireless communication is one of the most promising technologies for the fifth generation (5G) wireless communication networks and beyond. The very broad bandwidth and directional propagation are the two features of mmWave channels. In order to develop the channel models properly reflecting the characteristics of mmWave channels, the in-depth studies of mmWave channels addressing those two features are required. In this thesis, three mmWave channel models and one beam alignment scheme are proposed related to those two features. First, for studying the very broad bandwidth feature of mmWave channels, we introduce an averaged power delay profile (APDP) method to estimate the frequency stationarity regions (FSRs) of channels. The frequency non-stationary (FnS) properties of channels are found in the data analysis. A FnS model is proposed to model the FnS channels in both the sub-6 GHz and mmWave frequency bands and cluster evolution in the frequency domain is utilised in the implementation of FnS model. Second, for studying the directional propagation feature of mmWave channels, we develop an angular APDP (A-APDP) method to study the planar angular stationarity regions (ASRs) of directional channels (DCs). Three typical directional channel impulse responses (D-CIRs) are found in the data analysis and light-of-sight (LOS), non-LOS (NLOS), and outage classes are used to classify those DCs. A modified Saleh-Valenzuela (SV) model is proposed to model the DCs. The angular domain cluster evolution is utilised to ensure the consistency of DCs. Third, we further extend the A-APDP method to study the spherical-ASRs of DCs. We model the directional mmWave channels by three-state Markov chain that consists of LOS, NLOS, and outage states and we use stationary model, non-stationary model, and “null” to describe the channels in each Markov state according to the estimated ASRs. Then, we propose to use joint channel models to simulate the instantaneous directional mmWave channels based on the limiting distribution of Markov chain. Finally, the directional propagated mmWave channels when the Tx and Rx in motion is addressed. A double Gaussian beams (DGBs) scheme for mobile-to-mobile (M2M) mmWave communications is proposed. The connection ratios of directional mmWave channels in each Markov state are studied
    corecore