3,373 research outputs found

    Advanced control designs for output tracking of hydrostatic transmissions

    Get PDF
    The work addresses simple but efficient model descriptions in a combination with advanced control and estimation approaches to achieve an accurate tracking of the desired trajectories. The proposed control designs are capable of fully exploiting the wide operation range of HSTs within the system configuration limits. A new trajectory planning scheme for the output tracking that uses both the primary and secondary control inputs was developed. Simple models or even purely data-driven models are envisaged and deployed to develop several advanced control approaches for HST systems

    The influence of surface roughness on the rheology of immersed and dry frictional spheres

    Get PDF
    Pressure-imposed rheometry is used to examine the influence of surface roughness on the rheology of immersed and dry frictional spheres in the dense regime. The quasi-static value of the effective friction coefficient is not significantly affected by particle roughness while the critical volume fraction at jamming decreases with increasing roughness. These values are found to be similar in immersed and dry conditions. Rescaling the volume fraction by the maximum volume fraction leads to collapses of rheological data on master curves. The asymptotic behaviors are examined close to the jamming transition

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    Integrated control and estimation based on sliding mode control applied to electrohydraulic actuator

    Get PDF
    Many problems in tracking control have been identified over the years, such as the availability of systems states, the presence of noise and system uncertainties, and speed of response, just to name a few. This thesis is concerned with developing novel integrated control and estimation algorithms to overcome some of these problems in order to achieve an efficient tracking performance. Since there are some significant advantages associated with Sliding Mode Control (SMC) or Variable Structure Control (VSC), (fast regulation rate and robustness to uncertainties), this research reviews and extends new filtering concepts for state estimation, referred to as the Variable Structure Filter (VSF)and Smooth Variable Structure Filter (SVSF). These are based on the philosophy of Sliding Mode Control.The VSF filter is designed to estimate some of the states of a plant when noise and uncertainties are presented. This is accomplished by refining an estimate of the states in an iterative fashion using two filter gains, one based on a noiseless system with no uncertainties and the second gain which reflects these uncertainties. The VSF is combined “seamlessly” with the Sliding Mode Controller to produce an integrated controller called a Sliding Mode Controller and Filter (SMCF). This new controller is shown to be a robust and effective integrated control strategy for linear systems. For nonlinear systems, a novel integrated control strategy called the Smooth Sliding Mode Controller and Filter (SSMCF), fuses the SMC and SVSF in a particular form to address nonlinearities. The gain term in the SVSF is redefined to form a new algorithm called the “SVSF with revised gain” in order to obtain a better estimation performance. Its performance is compared to that of the Extended Kalman Filter (EKF) when applied to a particular nonlinear plant.The SMCF and SSMCF are applied to the experimental prototype of a precision positioning hydraulic system called an ElectroHydraulic Actuator (EHA) system. The EHA system is known to display nonlinear characteristics but can approximate linear behavior under certain operating conditions, making it ideal to test the robustness of the proposed controllers.The main conclusion drawn in this research was that the SMCF and SSMCF as developed and implemented, do exhibit robust and high performance state estimation and trajectory tracking control given modeling uncertainties and noise. The controllers were applied to a prototype EHA which demonstrated the use of the controllers in a “real world” application. It was also concluded that the application of the concepts of VSC for the controller can alleviate a challenging mechanical problem caused by a slip-stick characteristic in friction. Another conclusion is that the revised form of the SVSF could obtain robust and fast state estimation for nonlinear systems.The original contributions of the research include: i) proposing the SMCF and SSMCF, ii) applying the Sliding Mode Controller to suppress cross-over oscillations caused by the slip-stick characteristics in friction which often occur in mechanical systems, iii) the first application of the SVSF for state estimation and iv) a comparative study of the SVSF and Extended Kalman Filter (EKF) to the EHA demonstrating the superiority of the SVSF for state estimation performance under both steady-state and transient conditions for the application considered.The dissertation is written in a paper format unlike the traditional Ph.D thesis manuscript. The content of the thesis discourse is based on five manuscripts which are appended at the end of the thesis. Fundamental principles and concepts associated with SMC, VSF, SVSF and the fused controllers are introduced. For each paper, the objectives, approaches, typical results, conclusions and major contributions are presented. Major conclusions are summarized and original contributions reiterated

    Nanomaterials by severe plastic deformation: review of historical developments and recent advances

    Get PDF
    International audienceSevere plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    An experimental rock mechanics investigation into shear discontinuities and their influence in the hydrocarbon resevoir environment

    Get PDF
    Abstract unavailable please refer to PD

    Four-field finite element solver and sensitivities for quasi-Newtonian flows

    Get PDF
    International audienceA computationally efficient finite element algorithm for power law fluid is elaborated in view of extensive direct and inverse simulations. We adopt a splitting technique to simplify the nonlinear structure of the fluids equations and derive a four-field saddle point formulation for which we prove the existence of a solution. The resolution of the corresponding variational inequalities is based on an augmented Lagrangian method and a mixed finite element discretization. The resulting iterative solver reveals to be fast and robust with low memory consumption. The time-saving provided by the algorithm compared to the standard algorithms of fixed point and Newton increases with the number of degrees of freedom and the nonlinearity of the problem. It is therefore well-suited for the solution of large problems with a great number of elements and for corresponding adjoint-based computations. Bidimensional numerical experiments are performed on two realistic situations of gravity flows: an experimental viscoplastic steady wave and a continental glacier. In the present study, results emphasize that for both cases, the modeling at bottom plays a strongly dominant role. Using surface velocitiy observations, the sensitivity analysis with respect to a spatially varying power-law exponent highlights the importance of an accurate knowledge of the rheology at high shear rate. The one on the basal sliding allows to detect the presence of a short wavelength (two times the thickness) free-slip area indetectable from surface velocities
    • 

    corecore