4,435 research outputs found

    Perturbing an axisymmetric magnetic equilibrium to obtain a quasi-axisymmetric stellarator

    Full text link
    It is demonstrated that finite-pressure, approximately quasi-axisymmetric stellarator equilibria can be directly constructed (without numerical optimization) via perturbations of given axisymmetric equilibria. The size of such perturbations is measured in two ways, via the fractional external rotation and, alternatively, via the relative magnetic field strength, i.e. the average size of the perturbed magnetic field, divided by the unperturbed field strength. It is found that significant fractional external rotational transform can be generated by quasi-axisymmetric perturbations, with a similar value of the relative field strength, despite the fact that the former scales more weakly with the perturbation size. High mode number perturbations are identified as a candidate for generating such transform with local current distributions. Implications for the development of a general non-perturbative solver for optimal stellarator equilibria is discussed

    Shape analysis in shape space

    Get PDF
    This study aims to classify different deformations based on the shape space concept. A shape space is a quotient space in which each point corresponds to a class of shapes. The shapes of each class are transformed to each other by a transformation group preserving a geometrical property in which we are interested. Therefore, each deformation is a curve on the high dimensional shape space manifold, and one can classify the deformations by comparison of their corresponding deformation curves in shape space. Towards this end, two classification methods are proposed. In the first method, a quasi conformal shape space is constructed based on a novel quasi-conformal metric, which preserves the curvature changes at each vertex during the deformation. Besides, a classification framework is introduced for deformation classification. The results on synthetic and real datasets show the effectiveness of the metric to estimate the intrinsic geometry of the shape space manifold, and its ability to classify and interpolate different deformations. In the second method, we introduce the medial surface shape space which classifies the deformations based on the medial surface and thickness of the shape. This shape space is based on the log map and uses two novel measures, average of the normal vectors and mean of the positions, to determine the distance between each pair of shapes on shape space. We applied these methods to classify the left ventricle deformations. The experimental results shows that the first method can remarkably classify the normal and abnormal subjects but this method cannot spot the location of the abnormality. In contrast, the second method can discriminate healthy subjects from patients with cardiomyopathy, and also can spot the abnormality on the left ventricle, which makes it a valuable assistant tool for diagnostic purposes

    A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    The architecture of mechanical metamaterialsis designed to harness geometry, non-linearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. While a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape-changers or topological insulators: a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations---relevant for small systems---and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials in the thermodynamic limit.Comment: Main text has 4 pages, 4 figures + Methods and Supplementary Informatio

    Finite Element Based Tracking of Deforming Surfaces

    Full text link
    We present an approach to robustly track the geometry of an object that deforms over time from a set of input point clouds captured from a single viewpoint. The deformations we consider are caused by applying forces to known locations on the object's surface. Our method combines the use of prior information on the geometry of the object modeled by a smooth template and the use of a linear finite element method to predict the deformation. This allows the accurate reconstruction of both the observed and the unobserved sides of the object. We present tracking results for noisy low-quality point clouds acquired by either a stereo camera or a depth camera, and simulations with point clouds corrupted by different error terms. We show that our method is also applicable to large non-linear deformations.Comment: additional experiment
    • …
    corecore