1,354 research outputs found

    A Riemannian Trust Region Method for the Canonical Tensor Rank Approximation Problem

    Full text link
    The canonical tensor rank approximation problem (TAP) consists of approximating a real-valued tensor by one of low canonical rank, which is a challenging non-linear, non-convex, constrained optimization problem, where the constraint set forms a non-smooth semi-algebraic set. We introduce a Riemannian Gauss-Newton method with trust region for solving small-scale, dense TAPs. The novelty of our approach is threefold. First, we parametrize the constraint set as the Cartesian product of Segre manifolds, hereby formulating the TAP as a Riemannian optimization problem, and we argue why this parametrization is among the theoretically best possible. Second, an original ST-HOSVD-based retraction operator is proposed. Third, we introduce a hot restart mechanism that efficiently detects when the optimization process is tending to an ill-conditioned tensor rank decomposition and which often yields a quick escape path from such spurious decompositions. Numerical experiments show improvements of up to three orders of magnitude in terms of the expected time to compute a successful solution over existing state-of-the-art methods

    Brown's moduli spaces of curves and the gravity operad

    Full text link
    This paper is built on the following observation: the purity of the mixed Hodge structure on the cohomology of Brown's moduli spaces is essentially equivalent to the freeness of the dihedral operad underlying the gravity operad. We prove these two facts by relying on both the geometric and the algebraic aspects of the problem: the complete geometric description of the cohomology of Brown's moduli spaces and the coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of Bergstr\"om-Brown which expresses the Betti numbers of Brown's moduli spaces via the inversion of a generating series. This also generalizes the Salvatore-Tauraso theorem on the nonsymmetric Lie operad.Comment: 26 pages; corrected Figure

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research
    corecore