2,795 research outputs found

    Quasi-Variational Inequality Problems over Product Sets with Quasi-monotone Operators

    Get PDF
    Quasi-variational inequalities are variational inequalities in which the constraint map depends on the current point. Due to this characteristic, specific proofs have been built to prove adapted existence results. Semicontinuity and generalized monotonicity are assumed and many efforts have been made in the last decades to use the weakest concepts. In the case of quasi-variational inequalities defined on a product of spaces, the existence statements in the literature require pseudomonotonicity of the operator, a hypothesis that is too strong for many applications, in particular in economics. On the other hand, the current minimal hypotheses for existence results for general quasi-variational inequalities are quasi-monotonicity and local upper sign-continuity. But since the product of quasi-monotone (respectively, locally upper sign-continuous) operators is not in general quasi-monotone (respectively, locally upper sign-continuous), it is thus quite difficult to use these general-type existence result in the quasi-variational inequalities defined on a product of spaces. In this work we prove, in an infinite-dimensional setting, several existence results for product-type quasi-variational inequalities by only assuming the quasi-monotonicity and local upper sign-continuity of the component operators. Our technique of proof is strongly based on an innovative stability result and on the new concept of net-lower sign-continuity

    Stability of the solution set of quasi-variational inequalities and optimal control

    Get PDF
    For a class of quasi-variational inequalities (QVIs) of obstacle-type the stability of its solution set and associated optimal control problems are considered. These optimal control problems are non-standard in the sense that they involve an objective with set-valued arguments. The approach to study the solution stability is based on perturbations of minimal and maximal elements of the solution set of the QVI with respect to {monotone} perturbations of the forcing term. It is shown that different assumptions are required for studying decreasing and increasing perturbations and that the optimization problem of interest is well-posed.Comment: 29 page
    corecore