1,076 research outputs found

    Quasi-Random Influences of Boolean Functions

    Full text link
    We examine a hierarchy of equivalence classes of quasi-random properties of Boolean Functions. In particular, we prove an equivalence between a number of properties including balanced influences, spectral discrepancy, local strong regularity, homomorphism enumerations of colored or weighted graphs and hypergraphs associated with Boolean functions as well as the kkth-order strict avalanche criterion amongst others. We further construct families of quasi-random boolean functions which exhibit the properties of our equivalence theorem and separate the levels of our hierarchy.Comment: 27 pages, 6 figure

    Quasirandomness in hypergraphs

    Get PDF
    An nn-vertex graph GG of edge density pp is considered to be quasirandom if it shares several important properties with the random graph G(n,p)G(n,p). A well-known theorem of Chung, Graham and Wilson states that many such `typical' properties are asymptotically equivalent and, thus, a graph GG possessing one such property automatically satisfies the others. In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner's result.Comment: 19 page

    Embeddings and Ramsey numbers of sparse k-uniform hypergraphs

    Full text link
    Chvatal, Roedl, Szemeredi and Trotter proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In previous work, we proved the same result for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs, for any integer k > 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of bounded maximum degree into suitable k-uniform `quasi-random' hypergraphs.Comment: 24 pages, 2 figures. To appear in Combinatoric

    The Poset of Hypergraph Quasirandomness

    Full text link
    Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990's.Comment: 43 pages, 1 figur

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Tournaments, 4-uniform hypergraphs, and an exact extremal result

    Full text link
    We consider 44-uniform hypergraphs with the maximum number of hyperedges subject to the condition that every set of 55 vertices spans either 00 or exactly 22 hyperedges and give a construction, using quadratic residues, for an infinite family of such hypergraphs with the maximum number of hyperedges. Baber has previously given an asymptotically best-possible result using random tournaments. We give a connection between Baber's result and our construction via Paley tournaments and investigate a `switching' operation on tournaments that preserves hypergraphs arising from this construction.Comment: 23 pages, 6 figure
    • …
    corecore