3,451 research outputs found

    Part I:

    Get PDF

    Cumulative author—Title index for volumes 128–135

    Get PDF

    Numerical relativity simulations of binary neutron stars

    Get PDF
    We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasi-equilibrium equal-mass irrotational binary neutron star configurations in quasi-circular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal-gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error-bars on the numerically generated waveforms in the inspiral phase

    Isogeometric Analysis for Electromagnetism

    Get PDF
    The combination of numerical analysis with the scanning technology has been seeing increased use in many research areas. There is an emerging need for high-fidelity geometric modeling and meshing for practical applications. The Isogeometric Analysis (IGA) is a comprehensive computational framework, which integrates geometric modeling and meshing with analysis. Different from other existing numerical methods, the IGA can generate analysis ready models without loss of geometrical accuracy. In IGA, the continuity and the quality of a solution can be conveniently controlled and refined. These features enable IGA to integrate modeling, analysis, and design in a unified framework, the root idea of IGA. The IGA for electromagmetics is studied here for steady and transient electromagnetics as well as electromagnetic scattering. The solution procedure and the associated Matlab codes are developed to simulate the electromagnetic radiation on a biological tissues. The scattered and the total electrical fields are computed over the complex geometry of a brain section with realistic material properties. A perfectly matched layer (PML) is developed to model the far field boundary condition. The IGA platform developed here offers a reliable simulation within an accurate representation of the geometry. The results of this research can be used both in evaluating the potential health and safety risks of electromagnetic radiations and in optimizing the design of radiating devices used in non-invasive diagnostics and therapies
    • …
    corecore