1,556 research outputs found

    Super-orthogonal space-time turbo coded OFDM systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.The ever increasing demand for fast and efficient broadband wireless communication services requires future broadband communication systems to provide a high data rate, robust performance and low complexity within the limited available electromagnetic spectrum. One of the identified, most-promising techniques to support high performance and high data rate communication for future wireless broadband services is the deployment of multi-input multi-output (MIMO) antenna systems with orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM techniques guarantees a much more reliable and robust transmission over a hostile wireless channel through coding over the space, time and frequency domains. In this thesis, two full-rate space-time coded OFDM systems are proposed. The first one, designed for two transmit antennas, is called extended super-orthogonal space-time trellis coded OFDM (ESOSTTC-OFDM), and is based on constellation rotation. The second one, called super-quasi-orthogonal space-time trellis coded OFDM (SQOSTTCOFDM), combines a quasi-orthogonal space-time block code with a trellis code to provide a full-rate code for four transmit antennas. The designed space-time coded MIMO-OFDM systems achieve a high diversity order with high coding gain by exploiting the diversity advantage of frequency-selective fading channels. Concatenated codes have been shown to be an effective technique of achieving reliable communication close to the Shannon limit, provided that there is sufficient available diversity. In a bid to improve the performance of the super orthogonal space-time trellis code (SOSTTC) in frequency selective fading channels, five distinct concatenated codes are proposed for MIMO-OFDM over frequency-selective fading channels in the second part of this thesis. Four of the coding schemes are based on the concatenation of convolutional coding, interleaving, and space-time coding, along multiple-transmitter diversity systems, while the fifth coding scheme is based on the concatenation of two space-time codes and interleaving. The proposed concatenated Super-Orthogonal Space-Time Turbo-Coded OFDM System I. B. Oluwafemi 2012 vii coding schemes in MIMO-OFDM systems achieve high diversity gain by exploiting available diversity resources of frequency-selective fading channels and achieve a high coding gain through concatenations by employing the turbo principle. Using computer software simulations, the performance of the concatenated SOSTTC-OFDM schemes is compared with those of concatenated space-time trellis codes and those of conventional SOSTTC-OFDM schemes in frequency-selective fading channels. Simulation results show that the concatenated SOSTTC-OFDM system outperformed the concatenated space-time trellis codes and the conventional SOSTTC-OFDM system under the various channel scenarios in terms of both diversity order and coding gain

    I/Q imbalance mitigation for space-time block coded communication systems

    Get PDF
    Multiple-input multiple-output (MIMO) space-time block coded (STBC) wireless communication systems provide reliable data transmissions by exploiting the spatial diversity in fading channels. However, due to component imperfections, the in-phase/quadrature (I/Q) imbalance caused by the non-ideal matching between the relative amplitudes and phases of the I and Q branches always exists in the practical implementation of MIMO STBC communication systems. Such distortion results in a complex conjugate term of the intended signal in the time domain, hence a mirror-image term in the frequency domain, in the data structure. Consequently, I/Q imbalance increases the symbol error rate (SER) drastically in MIMO STBC or STBC MIMO orthogonal frequency division multiplexing (OFDM) communication systems, where both the signal and its complex conjugate are utilized for the information transmission, hence should be mitigated effectively. In this dissertation, the impact of I/Q imbalance in MIMO STBC systems over flat fading channels, the impact of I/Q imbalance in STBC MIMO-OFDM systems and in time- reversal STBC (TR-STBC) systems over frequency-selective fading channels are studied systematically. With regard to the MIMO STBC and the STBC MIMO-OFDM systems with I/Q imbalance, orthogonal space-time block codes (OSTBCs), quasi-orthogonal STBCs (QOSTBCs) and rotated QOSTBCs (RQOSTBCs) are studied, respectively. By exploiting the special structure of the received signal, low-complexity solutions are provided to mitigate the distortion induced by I/Q imbalance successfully. In addition, to mitigate I/Q imbalance while at the same time to exploit the multipath diversity for STBC OFDM systems over frequency-selective fading channels, a new encoding/decoing scheme for the grouped linear constellation precoded (GLCP) OFDM systems with I/Q imbalance is studied. In Chapter 1, the objectives of the research are elaborated. In Chapter 2, the various I/Q imbalance models are introduced, and the model used in this dissertation is established. In Chapter 3, the performance degradation caused by I/Q imbalance of the transceivers in MIMO STBC wireless communication systems over flat fading channels and the solutions are studied. A 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail. By exploiting the special structure of the received signal, low-complexity solutions are proposed to mitigate I/Q imbalance successfully. Since STBCs are developed for frequency-flat fading channels, to achieve the spatial diversity in frequency-selective fading channels, MIMO-OFDM arrangements have been suggested, where STBCs are used across different antennas in conjunction with OFDM. In Chapter 4, the performance degradation caused by I/Q imbalance in STBC MIMO-OFDM wireless systems over frequency-selective fading channels and the solutions are studied. Similarly, a 2 Tx Alamouti system, a 4 Tx quasi-orthogonal STBC (QOSTBC) system, and a 4 Tx rotated QOSTBC (RQOSTBC) system with I/Q imbalance are studied in detail, and low-complexity solutions are proposed to mitigate the distortion effectively. However, OFDM systems suffer from the loss of the multipath diversity by converting frequency-selective fading channels into parallel frequency-flat fading subchannels. To exploit the multipath diversity and reduce the decoding complexity, GLCP OFDM systems with I/Q imbalance are studied. By judiciously assigning the mirror-subcarrier pair into one group, a new encoding/decoding scheme with a low-complexity is proposed to mitigate I/Q imbalance for GLCP OFDM systems in Chapter 5. Since OFDM communication systems have high peak-to-average power ratio (PAPR) problem and are sensitive to carrier frequency offset (CFO), to achieve both the spatial and multipath diversity, time-reversal STBC (TR-STBC) communication systems are introduced. In Chapter 6, the I/Q imbalance mitigating solutions in TR-STBC systems, both in the time domain and in the frequency domain, are studied

    New Full-Diversity Space-Time-Frequency Block Codes with Simplified Decoders for MIMO-OFDM Systems

    Get PDF
    Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is known as a promising solution for wideband wireless communications. This is why it has been considered as a powerful candidate for IEEE 802.11n standard. Numerous space-frequency block codes (SFBCs) and space-time- frequency block codes (STFBCs) have been proposed so far for implementing MIMO-OFDM systems. In this paper, at first we propose new full-diversity STFBCs with high coding gain in time-varying channels; the construct method for this structure is using orthogonal space-time block code for any arbitrary number of transmit antenna and then we propose a decoder with linear complexity for our proposed coding scheme. Simulation results verify that the proposed STFBCs outperform other recently published STFBCs

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Performance evaluation of channel estimation techniques for MIMO-OFDM systems with adaptive sub-carrier allocation

    Get PDF
    • …
    corecore