1,034 research outputs found

    Quantitative Phase Imaging with a Metalens

    Full text link
    Quantitative phase imaging (QPI) recovers the exact wavefront of light from the intensity measured by a camera. Topographical maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of an optical fiber endoscope with a chromatic silicon nitride metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture. The half millimeter wide metalens shows phase imaging capability with a 280 field of view and 0.1{\lambda} sensitivity in experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, no additional filters are needed. Key limitations in the scaling of a phase imaging system, such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the proposed schem

    A quasi-real-time inertialess microwave holographic imaging system

    Get PDF
    This thesis records the theoretical analysis and hardware development of a laboratory microwave imaging system which uses holographic principles. The application of an aperture synthesis technique and the electronic commutation of all antennae has resulted in a compact and economic assembly - which requires no moving parts and which, consequently, has a high field mapping speed potential. The relationship of this microwave holographic system to other established techniques is examined theoretically and the performance of the imaging system is demonstrated using conventional optically- and numerically-based reconstruction of the measured holograms. The high mapping speed potential of this system has allowed the exploitation of an imaging mode not usually associated with microwave holography. In particular, a certain antenna array specification leads to a versatile imaging system which corresponds closely in the laboratory scale to the widely used synthetic aperture radar principle. It is envisaged that the microwave holographic implementation of this latter principle be used as laboratory instrumentation in the elucidation of the interaction of hydrodynamic and electromagnetic waves. Some simple demonstrations of this application have been presented, and the concluding chapter also describes a suitable hardware specification. This thesis has also emphasised the hardware details of the imaging system since the development of the microwave and other electronic components represented a substantial part of this research and because the potential applications of the imaging principle have been found to be intimately linked to the tolerances of the various microwave components. Bibliography: pages 122-132

    Observing distant objects with a multimode fibre-based holographic endoscope

    Get PDF
    Holographic wavefront manipulation enables converting hair-thin multimode optical fibres into minimally invasive lensless imaging instruments conveying much higher information densities than conventional endoscopes. Their most prominent applications focus on accessing delicate environments, including deep brain compartments, and recording micrometre-scale resolution images of structures in close proximity to the distal end of the instrument. Here, we introduce an alternative 'farfield' endoscope, capable of imaging macroscopic objects across a large depth of field. The endoscope shaft with dimensions of 0.2Ă—\times0.4 mm2^2 consists of two parallel optical fibres, one for illumination and the second for signal collection. The system is optimized for speed, power efficiency and signal quality, taking into account specific features of light transport through step-index multimode fibres. The characteristics of imaging quality are studied at distances between 20 and 400 mm. As a proof-of-concept, we provide imaging inside the cavities of a sweet pepper commonly used as a phantom for biomedically relevant conditions. Further, we test the performance on a functioning mechanical clock, thus verifying its applicability in dynamically changing environments. With performance reaching the standard definition of video endoscopes, this work paves the way towards the exploitation of minimally-invasive holographic micro-endoscopes in clinical and diagnostics applications.Comment: 9+6 pages, 4+5 figure

    Explicit reconstruction of the entanglement wedge

    Full text link
    The problem of how the boundary encodes the bulk in AdS/CFT is still a subject of study today. One of the major issues that needs more elucidation is the problem of subregion duality; what information of the bulk a given boundary subregion encodes. Although the proof given by Dong, Harlow, and Wall states that the entanglement wedge of the bulk should be encoded in boundary subregions, no explicit procedure for reconstructing the entanglement wedge was given so far. In this paper, mode sum approach to obtaining smearing functions for a single bulk scalar is generalised to include bulk reconstruction in the entanglement wedge of boundary subregions. It is generally expectated that solutions to the wave equation on a complicated coordinate patch are needed, but this hard problem has been transferred to a less hard but tractable problem of matrix inversion.Comment: version accepted by JHEP; added references and discussions on covarianc

    Digital Hologram Image Processing

    Get PDF
    In this thesis we discuss and examine the contributions we have made to the field of digital hologram image processing. In particular, we will deal with the processing of numerical reconstructions of real-world three-dimensional macroscopic objects recorded by in-line digital holography. Our selection of in-line digital holography over off-axis digital holography is based primarily on resolution. There is evidence that an off-axis architecture requires approximately four times the resolution to record a hologram than an in-line architecture. The high resolution of holographic film means this is acceptable in optical holography. However, in digital holography the bandwidth of the recording medium is already severely limited and if we are to extract information from reconstructions we need the highest possible resolution which, if one cannot harness the functionality of accurately reconstructing phase, is achieved through using an in-line architecture. Two of the most significant problems encountered with reconstructions of in-line digital holograms include the small depth-of-field of each reconstruction and corruptive influence of the unwanted twin-image. This small depth-of-field makes it difficult to accurately process the numerical reconstructions and it is in this shortcoming that we will make our first three contributions: focusing algorithms, background and object segmentation algorithms and algorithms to create a single image where all object regions are in focus. Using a combination of our focusing algorithms and our background segmentation algorithm, we will make our fourth contribution: a rapid twin-image reduction algorithm for in-line digital holography. We believe that our techniques would be applicable to all digital holographic objects, in particular its relevant to objects where phase unwrapping is not an option. We demonstrate the usefulness of the algorithms for a range of macroscopic objects with varying texture and contrast

    Digital Hologram Image Processing

    Get PDF
    In this thesis we discuss and examine the contributions we have made to the field of digital hologram image processing. In particular, we will deal with the processing of numerical reconstructions of real-world three-dimensional macroscopic objects recorded by in-line digital holography. Our selection of in-line digital holography over off-axis digital holography is based primarily on resolution. There is evidence that an off-axis architecture requires approximately four times the resolution to record a hologram than an in-line architecture. The high resolution of holographic film means this is acceptable in optical holography. However, in digital holography the bandwidth of the recording medium is already severely limited and if we are to extract information from reconstructions we need the highest possible resolution which, if one cannot harness the functionality of accurately reconstructing phase, is achieved through using an in-line architecture. Two of the most significant problems encountered with reconstructions of in-line digital holograms include the small depth-of-field of each reconstruction and corruptive influence of the unwanted twin-image. This small depth-of-field makes it difficult to accurately process the numerical reconstructions and it is in this shortcoming that we will make our first three contributions: focusing algorithms, background and object segmentation algorithms and algorithms to create a single image where all object regions are in focus. Using a combination of our focusing algorithms and our background segmentation algorithm, we will make our fourth contribution: a rapid twin-image reduction algorithm for in-line digital holography. We believe that our techniques would be applicable to all digital holographic objects, in particular its relevant to objects where phase unwrapping is not an option. We demonstrate the usefulness of the algorithms for a range of macroscopic objects with varying texture and contrast

    A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy

    Get PDF
    We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming
    • …
    corecore