4,046 research outputs found

    Quasi-Newton Hamiltonian Monte Carlo

    Get PDF
    Abstract The Hamiltonian Monte Carlo (HMC) method has become significantly popular in recent years. It is the state-of-the-art MCMC sampler due to its more efficient exploration to the parameter space than the standard random-walk based proposal. The key idea behind HMC is that it makes use of first-order gradient information about the target distribution. In this paper, we propose a novel dynamics using second-order geometric information about the desired distribution. The second-order information is estimated by using a quasi-Newton method (say, the BFGS method), so it does not bring heavy computational burden. Moreover, our theoretical analysis guarantees that this dynamics remains the target distribution invariant. As a result, the proposed quasiNewton Hamiltonian Monte Carlo (QNHMC) algorithm traverses the parameter space more efficiently than the standard HMC and produces a less correlated series of samples. Finally, empirical evaluation on simulated data verifies the effectiveness and efficiency of our approach. We also conduct applications of QNHMC in Bayesian logistic regression and online Bayesian matrix factorization problems

    Quasi-Newton Methods for Markov Chain Monte Carlo

    Get PDF
    The performance of Markov chain Monte Carlo methods is often sensitive to the scaling and correlations between the random variables of interest. An important source of information about the local correlation and scale is given by the Hessian matrix of the target distribution, but this is often either computationally expensive or infeasible. In this paper we propose MCMC samplers that make use of quasi-Newton approximations, which approximate the Hessian of the target distribution from previous samples and gradients generated by the sampler. A key issue is that MCMC samplers that depend on the history of previous states are in general not valid. We address this problem by using limited memory quasi-Newton methods, which depend only on a fixed window of previous samples. On several real world datasets, we show that the quasi-Newton sampler is more effective than standard Hamiltonian Monte Carlo at a fraction of the cost of MCMC methods that require higher-order derivatives.

    Hamiltonian Monte Carlo Without Detailed Balance

    Full text link
    We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate a greater than factor of two improvement in mixing time on three test problems. We release the source code as Python and MATLAB packages.Comment: Accepted conference submission to ICML 2014 and also featured in a special edition of JMLR. Since updated to include additional literature citation

    Quasi-Newton particle Metropolis-Hastings

    Full text link
    Particle Metropolis-Hastings enables Bayesian parameter inference in general nonlinear state space models (SSMs). However, in many implementations a random walk proposal is used and this can result in poor mixing if not tuned correctly using tedious pilot runs. Therefore, we consider a new proposal inspired by quasi-Newton algorithms that may achieve similar (or better) mixing with less tuning. An advantage compared to other Hessian based proposals, is that it only requires estimates of the gradient of the log-posterior. A possible application is parameter inference in the challenging class of SSMs with intractable likelihoods. We exemplify this application and the benefits of the new proposal by modelling log-returns of future contracts on coffee by a stochastic volatility model with α\alpha-stable observations.Comment: 23 pages, 5 figures. Accepted for the 17th IFAC Symposium on System Identification (SYSID), Beijing, China, October 201
    • …
    corecore