980 research outputs found

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    Thermodynamic and Structural Phase Behavior of Colloidal and Nanoparticle Systems.

    Full text link
    We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source. Common thermodynamic ensembles can be run in two dimensional or three dimensional triclinic boxes. We developed an efficient scheme for hard particle pressure measurement based on volume perturbation. We demonstrate the effectiveness of low order virial coefficients in describing the compressibility factor of fluids of hard polyhedra. The second virial coefficient is obtained analytically from particle asphericity and can be used to define an effective sphere with similar low-density behavior. Higher-order virial coefficients --- efficiently calculated with Mayer Sampling Monte Carlo --- are used to define an exponential approximant that exhibits the best known semi-analytic characterization of hard polyhedron fluid state functions. We present a general method for the exact calculation of convex polyhedron diffraction form factors that is more easily applied to common shape data structures than the techniques typically presented in literature. A proof of concept user interface illustrates how a researcher might investigate the role of particle form factor in the diffraction patterns of different particles in known structures. We present a square-triangle dodecagonal quasicrystal (DQC) in a binary mixture of nanocrystals (NCs). We demonstrate how the decoration of the square and triangle tiles naturally gives rise to partial matching rules via symmetry breaking in layers perpendicular to the dodecagonal axis. We analyze the geometry of the experimental tiling and, following the ``cut and project'' theory, lift the square and triangle tiling pattern to four dimensional space to perform phason analysis historically applied only in simulation and atomic systems. Hard particle models are unsuccessful at explaining the stability of the binary nanoparticle super lattice. However, with a simple isotropic soft particle model, we are able to demonstrate seeded growth of the experimental structure in simulation. These simulations indicate that the most important stabilizing properties of the short range structure are the size ratio of the particles and an A--B particle attraction.PhDMaterials Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/120906/1/eirrgang_1.pd

    The Voronoi tessellation method in astronomy

    Full text link
    The Voronoi tessellation is a natural way of space segmentation, which has many applications in various fields of science and technology, as well as in social sciences and visual art. The varieties of the Voronoi tessellation methods are commonly used in computational fluid dynamics, computational geometry, geolocation and logistics, game dev programming, cartography, engineering, liquid crystal electronic technology, machine learning, etc. The very innovative results were obtained in astronomy, namely for a large-scale galaxy distribution and cosmic web pattern, for revealing the quasi-periodicity in a pencil-beam survey, for a description of constraints on the isotropic cosmic microwave background and the explosion scenario likely supernova events, for image processing, adaptive smoothing, segmentation, for signal-to-noise ratio balancing, for spectrography data analysis as well as in the moving-mesh cosmology simulation. We briefly describe these results, paying more attention to the practical application of the Voronoi tessellation related to the spatial large-scale galaxy distribution.Comment: 24 pages, 6 figures, accepted to Intelligent Astrophysics, Eds. I. Zelinka, D. Baron, M. Bresci

    Patternshop: Editing Point Patterns by Image Manipulation

    Full text link
    Point patterns are characterized by their density and correlation. While spatial variation of density is well-understood, analysis and synthesis of spatially-varying correlation is an open challenge. No tools are available to intuitively edit such point patterns, primarily due to the lack of a compact representation for spatially varying correlation. We propose a low-dimensional perceptual embedding for point correlations. This embedding can map point patterns to common three-channel raster images, enabling manipulation with off-the-shelf image editing software. To synthesize back point patterns, we propose a novel edge-aware objective that carefully handles sharp variations in density and correlation. The resulting framework allows intuitive and backward-compatible manipulation of point patterns, such as recoloring, relighting to even texture synthesis that have not been available to 2D point pattern design before. Effectiveness of our approach is tested in several user experiments.Comment: 14 pages, 16 figure

    Structure formation and identification in geometrically driven soft matter systems

    Get PDF
    Subdividing space through interfaces leads to many space partitions that are relevant to soft matter self-assembly. Prominent examples include cellular media, e.g. soap froths, which are bubbles of air separated by interfaces of soap and water, but also more complex partitions such as bicontinuous minimal surfaces. Using computer simulations, this thesis analyses soft matter systems in terms of the relationship between the physical forces between the system’s constituents and the structure of the resulting interfaces or partitions. The focus is on two systems, copolymeric self-assembly and the so-called Quantizer problem, where the driving force of structure formation, the minimisation of the free-energy, is an interplay of surface area minimisation and stretching contributions, favouring cells of uniform thickness. In the first part of the thesis we address copolymeric phase formation with sharp interfaces. We analyse a columnar copolymer system “forced” to assemble on a spherical surface, where the perfect solution, the hexagonal tiling, is topologically prohibited. For a system of three-armed copolymers, the resulting structure is described by solutions of the so-called Thomson problem, the search of minimal energy configurations of repelling charges on a sphere. We find three intertwined Thomson problem solutions on a single sphere, occurring at a probability depending on the radius of the substrate. We then investigate the formation of amorphous and crystalline structures in the Quantizer system, a particulate model with an energy functional without surface tension that favours spherical cells of equal size. We find that quasi-static equilibrium cooling allows the Quantizer system to crystallise into a BCC ground state, whereas quenching and non-equilibrium cooling, i.e. cooling at slower rates then quenching, leads to an approximately hyperuniform, amorphous state. The assumed universality of the latter, i.e. independence of energy minimisation method or initial configuration, is strengthened by our results. We expand the Quantizer system by introducing interface tension, creating a model that we find to mimic polymeric micelle systems: An order-disorder phase transition is observed with a stable Frank-Caspar phase. The second part considers bicontinuous partitions of space into two network-like domains, and introduces an open-source tool for the identification of structures in electron microscopy images. We expand a method of matching experimentally accessible projections with computed projections of potential structures, introduced by Deng and Mieczkowski (1998). The computed structures are modelled using nodal representations of constant-mean-curvature surfaces. A case study conducted on etioplast cell membranes in chloroplast precursors establishes the double Diamond surface structure to be dominant in these plant cells. We automate the matching process employing deep-learning methods, which manage to identify structures with excellent accuracy

    Book reports

    Get PDF

    GEANT: detector description and simulation tool

    Get PDF
    As the scale and complexity of High Energy Physics experiments increase, simulation studies require more and more care and become essential to design and optimise the detectors, develop and test the reconstruction and analysis programs, and interpret the experimental data. GEANT is a system of detector description and simulation tools that help physicists in such studies

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern
    • …
    corecore