90 research outputs found

    New Structured Matrix Methods for Real and Complex Polynomial Root-finding

    Full text link
    We combine the known methods for univariate polynomial root-finding and for computations in the Frobenius matrix algebra with our novel techniques to advance numerical solution of a univariate polynomial equation, and in particular numerical approximation of the real roots of a polynomial. Our analysis and experiments show efficiency of the resulting algorithms.Comment: 18 page

    Kinetic energy operator approach to the quantum three-body problem with Coulomb interactions

    Full text link
    We present a non-variational, kinetic energy operator approach to the solution of quantum three-body problem with Coulomb interactions, based on the utilization of symmetries intrinsic to the kinetic energy operator, i.e., the three-body Laplacian operator with the respective masses. Through a four-step reduction process, the nine dimensional problem is reduced to a one dimensional coupled system of ordinary differential equations, amenable to accurate numerical solution as an infinite-dimensional algebraic eigenvalue problem. A key observation in this reduction process is that in the functional subspace of the kinetic energy operator where all the rotational degrees of freedom have been projected out, there is an intrinsic symmetry which can be made explicit through the introduction of Jacobi-spherical coordinates. A numerical scheme is presented whereby the Coulomb matrix elements are calculated to a high degree of accuracy with minimal effort, and the truncation of the linear equations is carried out through a systematic procedureComment: 56 pages, 11 figure

    Galerkin-Laguerre Spectral Solution of Self-Similar Boundary Layer Problems

    Get PDF
    In this work the Laguerre basis for the biharmonic equation introduced by Jie Shen is employed in the spectral solution of self-similar problems of the boundary layer theory. An original Petrov-Galerkin formulation of the Falkner-Skan equation is presented which is based on a judiciously chosen special basis function to capture the asymptotic behaviour of the unknown. A spectral method of remarkable simplicity is obtained for computing Falkner-Skan-Cooke boundary layer flows. The accuracy and efficiency of the Laguerre spectral approximation is illustrated by determining the linear stability of nonseparated and separated flows according to the Orr-Sommerfeld equation. The pentadiagonal matrices representing the derivative operators are explicitly provided in an Appendix to aid an immediate implementation of the spectral solution algorithms

    TWO DIMENSIONAL J-MATRIX APPROACH TO QUANTUM SCATTERING

    Get PDF
    corecore