3,119 research outputs found

    On Modal Logics of Partial Recursive Functions

    Full text link
    The classical propositional logic is known to be sound and complete with respect to the set semantics that interprets connectives as set operations. The paper extends propositional language by a new binary modality that corresponds to partial recursive function type constructor under the above interpretation. The cases of deterministic and non-deterministic functions are considered and for both of them semantically complete modal logics are described and decidability of these logics is established

    On the Satisfiability of Quasi-Classical Description Logics

    Get PDF
    Though quasi-classical description logic (QCDL) can tolerate the inconsistency of description logic in reasoning, a knowledge base in QCDL possibly has no model. In this paper, we investigate the satisfiability of QCDL, namely, QC-coherency and QC-consistency and develop a tableau calculus, as a formal proof, to determine whether a knowledge base in QCDL is QC-consistent. To do so, we repair the standard tableau for DL by introducing several new expansion rules and defining a new closeness condition. Finally, we prove that this calculus is sound and complete. Based on this calculus, we implement an OWL paraconsistent reasoner called QC-OWL. Preliminary experiments show that QC-OWL is highly efficient in checking QC-consistency

    Many-valued coalgebraic logic over semi-primal varieties

    Full text link
    We study many-valued coalgebraic logics with semi-primal algebras of truth-degrees. We provide a systematic way to lift endofunctors defined on the variety of Boolean algebras to endofunctors on the variety generated by a semi-primal algebra. We show that this can be extended to a technique to lift classical coalgebraic logics to many-valued ones, and that (one-step) completeness and expressivity are preserved under this lifting. For specific classes of endofunctors, we also describe how to obtain an axiomatization of the lifted many-valued logic directly from an axiomatization of the original classical one. In particular, we apply all of these techniques to classical modal logic

    Semantics and Ontology:\ud On the Modal Structure of an Epistemic Theory of Meaning

    Get PDF
    In this paper I shall confront three basic questions.\ud First, the relevance of epistemic structures, as formalized\ud and dealt with by current epistemic logics, for a\ud general Theory of meaning. Here I acknowledge M. Dummett"s\ud idea that a systematic account of what is meaning of\ud an arbitrary language subsystem must especially take into\ud account the inferential components of meaning itself. That\ud is, an analysis of meaning comprehension processes,\ud given in terms of epistemic logics and semantics for epistemic\ud notions.\ud The second and third questions relate to the ontological\ud and epistemological framework for this approach.\ud Concerning the epistemological aspects of an epistemic\ud theory of meaning, the question is: how epistemic logics\ud can eventually account for the informative character of\ud meaning comprehension processes. "Information� seems\ud to be built in the very formal structure of epistemic processes,\ud and should be exhibited in modal and possibleworld\ud semantics for propositional knowledge and belief.\ud However, it is not yet clear what is e.g. a possible world.\ud That is: how it can be defined semantically, other than by\ud accessibility rules which merely define it by considering its\ud set-theoretic relations with other sets-possible worlds.\ud Therefore, it is not clear which is the epistemological status\ud of propositional information contained in the structural\ud aspects of possible world semantics. The problem here\ud seems to be what kind of meaning one attributes to the\ud modal notion of possibility, thus allowing semantical and\ud synctactical selectors for possibilities. This is a typically\ud Dummett-style problem.\ud The third question is linked with this epistemological\ud problem, since it is its ontological counterpart. It concerns\ud the limits of the logical space and of logical semantics for a\ud of meaning. That is, it is concerned with the kind of\ud structure described by inferential processes, thought, in a\ud fregean perspective, as pre-conditions of estentional\ud treatment of meaning itself. The second and third questions\ud relate to some observations in Wittgenstein"s Tractatus.\ud I shall also try to show how their behaviour limits the\ud explicative power of some semantics for epistemic logics\ud (Konolige"s and Levesque"s for knowledge and belief)

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53
    • …
    corecore