125 research outputs found

    Robust error estimates in weak norms for advection dominated transport problems with rough data

    Get PDF
    We consider mixing problems in the form of transient convection--diffusion equations with a velocity vector field with multiscale character and rough data. We assume that the velocity field has two scales, a coarse scale with slow spatial variation, which is responsible for advective transport and a fine scale with small amplitude that contributes to the mixing. For this problem we consider the estimation of filtered error quantities for solutions computed using a finite element method with symmetric stabilization. A posteriori error estimates and a priori error estimates are derived using the multiscale decomposition of the advective velocity to improve stability. All estimates are independent both of the P\'eclet number and of the regularity of the exact solution

    The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions

    Get PDF
    In this paper, we consider the symmetric interior penalty Galerkin (SIPG) method which is one of Discontinuous Galerkin Methods for the Dirichlet optimal control problems governed by linear advection-diffusion-reaction equation on a convex polygonal domain and the difficulties which we faced while solving this problem numerically. Since standard Galerkin methods have failed when the boundary layers have occurred and advection diffusion has dominated, these difficulties can occur in the cases of higher order elements and non smooth Dirichlet data in using standard finite elements. We find the most convenient natural setting of Dirichlet boundary control problem for the Laplacian and the advection diffusion reaction equations.After converting the continuous problem to an optimization problem, we solve it by "discretize-then-optimize" approach. In final, we estimate the optimal priori error estimates in suitable norms of the solutions and then support the result and the features of the method with numerical examples on the different kinds of domain

    An adaptive SUPG method for evolutionary convection-diffusion equations

    Get PDF
    An adaptive algorithm for the numerical simulation of time-dependent convection-diffusion-reaction equations will be proposed and studied. The algorithm allows the use of the natural extension of any error estimator for the steady-state problem for controlling local refinement and coarsening. The main idea consists in considering the SUPG solution of the evolutionary problem as the SUPG solution of a particular steady-state convection-diffusion problem with data depending on the computed solution. The application of the error estimator is based on a heuristic argument by considering a certain term to be of higher order. This argument is supported in the one-dimensional case by numerical analysis. In the numerical studies, particularly the residual-based error estimator from [18] will be applied, which has proved to be robust in the SUPG norm. The effectivity of this error estimator will be studied and the numerical results (accuracy of the solution, fineness of the meshes) will be compared with results obtained by utilizing the adaptive algorithm proposed in [6]

    Automatic stabilization of finite-element simulations using neural networks and hierarchical matrices

    Full text link
    Petrov-Galerkin formulations with optimal test functions allow for the stabilization of finite element simulations. In particular, given a discrete trial space, the optimal test space induces a numerical scheme delivering the best approximation in terms of a problem-dependent energy norm. This ideal approach has two shortcomings: first, we need to explicitly know the set of optimal test functions; and second, the optimal test functions may have large supports inducing expensive dense linear systems. Nevertheless, parametric families of PDEs are an example where it is worth investing some (offline) computational effort to obtain stabilized linear systems that can be solved efficiently, for a given set of parameters, in an online stage. Therefore, as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any PDE-parameter, to the matrix of coefficients of optimal test functions (in a basis expansion) associated with that PDE-parameter. Next, as a remedy for the second shortcoming, we use the low-rank approximation to hierarchically compress the (non-square) matrix of coefficients of optimal test functions. In order to accelerate this process, we train a neural network to learn a critical bottleneck of the compression algorithm (for a given set of PDE-parameters). When solving online the resulting (compressed) Petrov-Galerkin formulation, we employ a GMRES iterative solver with inexpensive matrix-vector multiplications thanks to the low-rank features of the compressed matrix. We perform experiments showing that the full online procedure as fast as the original (unstable) Galerkin approach. In other words, we get the stabilization with hierarchical matrices and neural networks practically for free. We illustrate our findings by means of 2D Eriksson-Johnson and Hemholtz model problems.Comment: 28 pages, 16 figures, 4 tables, 6 algorithm

    A New HDG Method for Dirichlet Boundary Control of Convection Diffusion PDEs II: Low Regularity

    Get PDF
    In the first part of this work, we analyzed a Dirichlet boundary control problem for an elliptic convection diffusion PDE and proposed a new hybridizable discontinuous Galerkin (HDG) method to approximate the solution. For the case of a 2D polygonal domain, we also proved an optimal superlinear convergence rate for the control under certain assumptions on the domain and on the target state. In this work, we revisit the convergence analysis without these assumptions; in this case, the solution can have low regularity and we use a different analysis approach. We again prove an optimal convergence rate for the control, and present numerical results to illustrate the convergence theory

    Automatic stabilization of finite-element simulations using neural networks and hierarchical matrices

    Get PDF
    Petrov–Galerkin formulations with optimal test functions allow for the stabilization of finite element simulations. In particular, given a discrete trial space, the optimal test space induces a numerical scheme delivering the best approximation in terms of a problem-dependent energy norm. This ideal approach has two shortcomings: first, we need to explicitly know the set of optimal test functions; and second, the optimal test functions may have large supports inducing expensive dense linear systems. A concise proposal on how to overcome these shortcomings has been raised during the last decade by the Discontinuous Petrov–Galerkin (DPG) methodology. However, DPG has also some limitations and difficulties: the method requires ultraweak variational formulations, obtained through a hybridization process, which is not trivial to implement at the discrete level. Our motivation is to offer a simpler alternative for the case of parametric PDEs, which can be used with any variational formulation. Indeed, parametric families of PDEs are an example where it is worth investing some (offline) computational effort to obtain stabilized linear systems that can be solved efficiently in an online stage, for a given range of parameters. Therefore, as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any PDE parameter, to the matrix of coefficients of optimal test functions (in some basis expansion) associated with that PDE parameter. Next, as a remedy for the second shortcoming, we use the low-rank approximation to hierarchically compress the (non-square) matrix of coefficients of optimal test functions. In order to accelerate this process, we train a neural network to learn a critical bottleneck of the compression algorithm (for a given set of PDE parameters). When solving online the resulting (compressed) Petrov–Galerkin formulation, we employ a GMRES iterative solver with inexpensive matrix–vector multiplications thanks to the low-rank features of the compressed matrix. We perform experiments showing that the full online procedure is as fast as an (unstable) Galerkin approach. We illustrate our findings by means of 2D–3D Eriksson–Johnson problems, together with 2D Helmholtz equation

    Optimal Control of Convective FitzHugh-Nagumo Equation

    Get PDF
    We investigate smooth and sparse optimal control problems for convective FitzHugh-Nagumo equation with travelling wave solutions in moving excitable media. The cost function includes distributed space-time and terminal observations or targets. The state and adjoint equations are discretized in space by symmetric interior point Galerkin (SIPG) method and by backward Euler method in time. Several numerical results are presented for the control of the travelling waves. We also show numerically the validity of the second order optimality conditions for the local solutions of the sparse optimal control problem for vanishing Tikhonov regularization parameter. Further, we estimate the distance between the discrete control and associated local optima numerically by the help of the perturbation method and the smallest eigenvalue of the reduced Hessian
    corecore