6,473 research outputs found

    Simulation of merging binary neutron stars in full general relativity: Γ=2\Gamma=2 case

    Full text link
    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ\Gamma-law equation of state in the form P=(Γ−1)ρϔP=(\Gamma-1)\rho\epsilon where P, ρ\rho, \varep and Γ\Gamma are the pressure, rest mass density, specific internal energy, and the adiabatic constant with Γ=2\Gamma=2. As initial conditions, we adopt models of corotational and irrotational binary neutron stars in a quasi-equilibrium state which are obtained using the conformal flatness approximation for the three geometry as well as an assumption that a helicoidal Killing vector exists. In this paper, we pay particular attention to the final product of the coalescence. We find that the final product depends sensitively on the initial compactness parameter of the neutron stars : In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases, in which the rest mass of each star is less than 70-80% of the maximum allowed mass of a spherical star. In the case of black hole formation, we roughly evaluate the mass of the disk around the black hole. For the merger of corotational binaries, a disk of mass ∌0.05−0.1M∗\sim 0.05-0.1M_* may be formed, where M_* is the total rest mass of the system. On the other hand, for the merger of irrotational binaries, the disk mass appears to be very small : < 0.01M_*.Comment: 27 pages, to appear in Phys. Rev.

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows

    Get PDF
    We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity) and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by transient growth mechanism due to shear flow nonnormality. This mechanism appears to be essentially anisotropic in spectral (wavenumber) plane and operates mainly for spatial Fourier harmonics with streamwise wavenumbers less than a ratio of flow shear to the Alfv\'{e}n speed, ky<S/uAk_y < S/u_A (i.e., the Alfv\'{e}n frequency is lower than the shear rate). We focused on the analysis of the character of nonlinear processes and underlying self-sustaining scheme of the turbulence, i.e., on the interplay between linear transient growth and nonlinear processes, in spectral plane. Our study, being concerned with a new type of the energy-injecting process for turbulence -- the transient growth, represents an alternative to the main trends of MHD turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows -- to the \emph{bypass} concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in wavenumber plane [as occurs in the related hydrodynamic flow, see Horton et al., Phys. Rev. E {\bf 81}, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.Comment: 19 pages, 7 figures, published in Phys. Rev. E 89, 043101 (2014

    Repurpose 2D Character Animations for a VR Environment Using BDH Shape Interpolation.

    Get PDF
    Virtual Reality technology has spread rapidly in recent years. However, its growth risks ending soon due to the absence of quality content, except for few exceptions. We present an original framework that allows artists to use 2D characters and animations in a 3D Virtual Reality environment, in order to give an easier access to the production of content for the platform. In traditional platforms, 2D animation represents a more economic and immediate alternative to 3D. The challenge in adapting 2D characters to a 3D environment is to interpret the missing depth information. A 2D character is actually flat, so there is not any depth information, and every body part is at the same level of the others. We exploit mesh interpolation, billboarding and parallax scrolling to simulate the depth between each body segment of the character. We have developed a prototype of the system, and extensive tests with a 2D animation production show the effectiveness of our framework

    Repurpose 2D Animations for a VR Environment using BDH Shape Interpolation

    Get PDF
    Virtual Reality technology has spread rapidly in recent years. However, its growth risks ending soon due to the absence of quality content, except for few exceptions. We present an original framework that allows artists to use 2D characters and animations in a 3D Virtual Reality environment, in order to give an easier access to the production of content for the platform. In traditional platforms, 2D animation represents a more economic and immediate alternative to 3D. The challenge in adapting 2D characters to a 3D environment is to interpret the missing depth information. A 2D character is actually flat, so there is not any depth information, and every body part is at the same level of the others. We exploit mesh interpolation, billboarding and parallax scrolling to simulate the depth between each body segment of the character. We have developed a prototype of the system, and extensive tests with a 2D animation production show the effectiveness of our framework

    Strong electronic correlations in superconducting organic charge transfer salts

    Full text link
    We review the role of strong electronic correlations in quasi--two-dimensional organic charge transfer salts such as (BEDT-TTF)2X_2X, (BETS)2Y_2Y and ÎČâ€Č\beta'-[Pd(dmit)2_2]2Z_2Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerised and is described by a half-filled Hubbard model; the second class is not strongly dimerised and is described by a quarter filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi--two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and `bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular, the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field.Comment: A review: 52 pages; 10 fig

    Rotating Higher Spin Partition Functions and Extended BMS Symmetries

    Get PDF
    We evaluate one-loop partition functions of higher-spin fields in thermal flat space with angular potentials; this computation is performed in arbitrary space-time dimension, and the result is a simple combination of Poincar\'e characters. We then focus on dimension three, showing that suitable products of one-loop partition functions coincide with vacuum characters of higher-spin asymptotic symmetry algebras at null infinity. These are extensions of the bms_3 algebra that emerges in pure gravity, and we propose a way to build their unitary representations and to compute the associated characters. We also extend our investigations to supergravity and to a class of gauge theories involving higher-spin fermionic fields.Comment: 58 pages; clarifications and references added; version to be published in JHE
    • 

    corecore