751 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Detecting malicious data injections in event detection wireless sensor networks

    Get PDF

    Outlier Detection Mechanism for Ensuring Availability in Wireless Mobile Networks Anomaly Detection

    Get PDF
    Finding things that are significantly different from, incomparable with, and inconsistent with the majority of data in many domains is the focus of the important research problem of anomaly detection. A noteworthy research problem has recently been illuminated by the explosion of data that has been gathered. This offers brand-new opportunities as well as difficulties for anomaly detection research. The analysis and monitoring of data connected to network traffic, weblogs, medical domains, financial transactions, transportation domains, and many more are just a few of the areas in which anomaly detection is useful. An important part of assessing the effectiveness of mobile ad hoc networks (MANET) is anomaly detection. Due to difficulties in the associated protocols, MANET has become a popular study topic in recent years. No matter where they are geographically located, users can connect to a dynamic infrastructure using MANETs. Small, powerful, and affordable devices enable MANETs to self-organize and expand quickly. By an outlier detection approach, the proposed work provides cryptographic property and availability for an RFID-WSN integrated network with node counts ranging from 500 to 5000. The detection ratio and anomaly scores are used to measure the system's resistance to outliers. The suggested method uses anomaly scores to identify outliers and provide defence against DoS attacks. The suggested method uses anomaly scores to identify outliers and provide protection from DoS attacks. The proposed method has been shown to detect intruders in a matter of milliseconds without interfering with authorised users' privileges. Throughput is improved by at least 6.8% using the suggested protocol, while Packet Delivery Ratio (PDR) is improved by at least 9.2% and by as much as 21.5%

    Distributed CESVM-DR anomaly detection for wireless sensor network

    Get PDF
    Nowadays, the advancement of the sensor technology, has introduced the smart living community where the sensor is communicating with each other or to other entities. This has introduced the new term called internet-of-things (IoT). The data collected from sensor nodes will be analyzed at the endpoint called based station or sink for decision making. Unfortunately, accurate data is not usually accurate and reliable which will affect the decision making at the base station. There are many reasons constituted to the inaccurate and unreliable data like the malicious attack, harsh environment as well as the sensor node failure itself. In a worse case scenario, the node failure will also lead to the dysfunctional of the entire network. Therefore, in this paper, an unsupervised one-class SVM (OCSVM) is used to build the anomaly detection schemes in recourse constraint Wireless Sensor Networks (WSNs). Distributed network topology will be used to minimize the data communication in the network which can prolong the network lifetime. Meanwhile, the dimension reduction has been providing the lightweight of the anomaly detection schemes. In this paper Distributed Centered Hyperellipsoidal Support Vector Machine (DCESVM-DR) anomaly detection schemes is proposed to provide the efficiency and effectiveness of the anomaly detection schemes

    Lightweight Anomaly Detection Scheme Using Incremental Principal Component Analysis and Support Vector Machine

    Get PDF
    Wireless Sensors Networks have been the focus of significant attention from research and development due to their applications of collecting data from various fields such as smart cities, power grids, transportation systems, medical sectors, military, and rural areas. Accurate and reliable measurements for insightful data analysis and decision-making are the ultimate goals of sensor networks for critical domains. However, the raw data collected by WSNs usually are not reliable and inaccurate due to the imperfect nature of WSNs. Identifying misbehaviours or anomalies in the network is important for providing reliable and secure functioning of the network. However, due to resource constraints, a lightweight detection scheme is a major design challenge in sensor networks. This paper aims at designing and developing a lightweight anomaly detection scheme to improve efficiency in terms of reducing the computational complexity and communication and improving memory utilization overhead while maintaining high accuracy. To achieve this aim, oneclass learning and dimension reduction concepts were used in the design. The One-Class Support Vector Machine (OCSVM) with hyper-ellipsoid variance was used for anomaly detection due to its advantage in classifying unlabelled and multivariate data. Various One-Class Support Vector Machine formulations have been investigated and Centred-Ellipsoid has been adopted in this study due to its effectiveness. Centred-Ellipsoid is the most effective kernel among studies formulations. To decrease the computational complexity and improve memory utilization, the dimensions of the data were reduced using the Candid Covariance-Free Incremental Principal Component Analysis (CCIPCA) algorithm. Extensive experiments were conducted to evaluate the proposed lightweight anomaly detection scheme. Results in terms of detection accuracy, memory utilization, computational complexity, and communication overhead show that the proposed scheme is effective and efficient compared few existing schemes evaluated. The proposed anomaly detection scheme achieved the accuracy higher than 98%, with O(nd) memory utilization and no communication overhead

    Graded Reliance Based Routing Scheme for Wireless Sensor Networks

    Get PDF
    In this paper Graded Reliance based routing algorithm is proposed to deal with defective nodes in Wireless Sensor Networks (WSN’s).The algorithm is intended to validated or build evidence that, by dynamically learning from previous experience and adapting the changes in the operational environment the application performance can be maximized and also enhance operative agility. Quality of service and social network measures are used to evaluate the confidence score of the sensor node. A dynamic model-based analysis is formulated for best reliance composition, aggregation, and formation to maximize routing performance. The results indicate that reliance based routing approaches yields better performance in terms of message delivery ratio and message delay without incurring substantial message overhead

    SMART OUTLIER DETECTION OF WIRELESS SENSOR NETWORK

    Get PDF
    Data sets collected from wireless sensor networks (WSN) are usually considered unreliable and subject to errors due to limited sensor capabilities and hard environmental resulting in a subset of the sensors data called outlier data. This paper proposes a technique to detect outlier data base on spatial-temporal similarity among data collected by geographically distributed sensors. The proposed technique is able to identify an abnormal subset of data collected by sensor node as outlier data. Moreover the proposed technique is able to classify this abnormal observation, an error data set or event affected set. Simulation result shows that high detection rate is achieved compared to conventional outlier detection techniques while preserving low positive false alarm rate
    • …
    corecore