5,463 research outputs found

    Ultrafast nonlinear silicon waveguides and quantum dot semiconductor optical amplifiers

    Get PDF
    In this book, nonlinear silicon-organic hybrid waveguides and quantum dot semiconductor optical amplifiers are investigated. Advantageous applications are identified, and corresponding proof-of-principle experiments are performed. Highly nonlinear silicon-organic hybrid waveguides show potential for all-optical signal processing based on fourwave mixing and cross-phase modulation. Quantum dot semiconductor optical amplifiers operate as linear amplifiers with a very large dynamic range

    Improvement of the Quantum Dot-in-a-Well (QDWELL) Laser and Amplifier Performance under the Optical Injection

    Get PDF
    Quantum dot (QD) laser devices can be successfully used in optical communications due to their unique properties caused by the carrier localization in three dimensions. In particular, quantum dot‐in‐a‐well (QDWELL) lasers are characterized by an extremely low threshold current density and the high modulation frequency. However, their operation rate is limited by the strongly nonlinear electron and hole scattering rates in and out of QD. We investigated theoretically the nonlinear optical phenomena in QDWELL lasers and amplifiers under the optical injection. We have shown that the synchronization of the carrier dynamics in QD and quantum well (QW) caused by the optical injection improves the QDWELL laser performance and, in particular, enhances the relaxation oscillation (RO) frequency. As a result, the QDWELL laser performance in the analogous optical link (AOL) is significantly improving. The optical injection also improves the performance of the QDWELL‐based semiconductor optical amplifiers (SOA)

    InP based lasers and optical amplifiers with wire-/dot-like active regions

    Get PDF
    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire-/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 and 1.65 mu m. In a brief overview different technological approaches will be discussed, while in the main part the current status and recent results of quantum-dash lasers are reported. This includes topics like dash formation and material growth, device performance of lasers and optical amplifiers, static and dynamic properties and fundamental material and device modelin

    Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 Όm

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 107, 191111 (2015) and may be found at https://doi.org/10.1063/1.4935796.This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ(3)/g0 of ∌4 × 10−19 m3/V3 are measured for 1490 Όm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ(3)/g0 compared to quantum dash lasers.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeEC/FP7/EU/264687/Postgraduate Research on Photonics as an Enabling Technology/PROPHE

    Ultra-Fast All-Optical Memory based on Quantum Dot Semiconductor Optical Amplifiers (QD-SOA)

    Get PDF
    All-optical signal processing is characterized by high bit-rate, power efficiency, high bandwidth, and transparency. All-optical logic gates are basic logic units for the all-optical signal processing implementation. Typically, all-optical gates are based on strong optical nonlinearities related in particular to semiconductor optical amplifiers (SOA). We briefly review the state of art in the field of all-optical logic gates and all-optical memory. In the original part, we discuss the ultrafast all-optical memory loop based on the Mach-Zehnder interferometer (MZI) with quantum dot (QD) semiconductor optical amplifier (SOA) in each arm

    Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light

    Full text link
    We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices.Comment: 9 pages, 5 figure

    Semiconductor quantum dots devices: Recent advances and application prospects

    Get PDF
    In this paper, a brief review will be given on recent advances in semiconductor quantum dots based optoelectronic devices. The focus will be on two major application areas, i.e., telecom devices and high power light sources, where some device examples will be discussed on the current status and for the future prospect

    Modeling of gain and phase dynamics in quantum dot amplifiers

    Get PDF
    By means of an electron hole rate equation model we explain the phase dynamics of a quantum dot semiconductor optical amplifier and the appearance of different decay times observed in pump and probe experiments. The ultrafast hole relaxation leads to a first ultrafast recovery of the gain, followed by electron relaxation and, in the nanosecond timescale, radiative and non-radiative recombinations. The phase dynamics is slower and is affected by thermal redistribution of carriers within the dot. We explain the ultrafast response of quantum dot amplifiers as an effect of hole escape and recombination without the need to assume Auger processe

    Numerical Modeling of the Emission Characteristics of Semiconductor Quantum Dash Materials for Lasers and Optical Amplifiers

    Get PDF
    This paper deals with the simulation of the emission characteristics of self-assembled semiconductor quantum dash (QDash) active materials, characterized by high length-to-width and width-to-height ratios of the dash size and by a wide spreading of the dash dimensions. This significant size fluctuation requires to compute numerically the corresponding energy distribution of the electron and hole confined states. Furthermore, due to the long dash length, it is necessary to take into account the many longitudinal confined states that contribute to the emission spectrum. To implement a model that does not require excessive computation time, some simplifying assumptions have been introduced and validated numerically. Starting from good knowledge of the dash size, material composition, and optical waveguide dimensions, we have been able to simulate the amplified spontaneous emission and gain spectra of a quantum dash semiconductor optical amplifier with a good quantitative agreement with the measured data. As an application example, the model is used to predict the gain properties of different QDash ensembles having various size distributions
    • 

    corecore