181 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD

    Dual sub-swarm interaction QPSO algorithm based on different correlation coefficients

    Get PDF
    A novel quantum-behaved particle swarm optimization (QPSO) algorithm, the dual sub-swarm interaction QPSO algorithm based on different correlation coefficients (DCC-QPSO), is proposed by constructing master-slave sub-swarms with different potential well centres. In the novel algorithm, the master sub-swarm and the slave sub-swarm have different functinons during the evolutionary process through separate information processing strategies. The master subswarm is conducive to maintaining population diversity and enhancing the global search ability of particles. The slave sub-swarm accelerates the convergence rate and strengthens the particles’ local searching ability. With the critical information contained in the search space and results of the basic QPSO algorithm, this new algorithm avoids the rapid disappearance of swarm diversity and enhances searching ability through collaboration between sub-swarms. Experimental results on six test functions show that DCC-QPSO outperforms the traditional QPSO algorithm regarding optimization of multimodal functions, with enhancement in both convergence speed and precision

    Biochemical systems identification by a random drift particle swarm optimization approach

    Get PDF
    BACKGROUND: Finding an efficient method to solve the parameter estimation problem (inverse problem) for nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for signalling pathways. The problem is stated as a data-driven nonlinear regression problem, which is converted into a nonlinear programming problem with many nonlinear differential and algebraic constraints. Due to the typical ill conditioning and multimodality nature of the problem, it is in general difficult for gradient-based local optimization methods to obtain satisfactory solutions. To surmount this limitation, many stochastic optimization methods have been employed to find the global solution of the problem. RESULTS: This paper presents an effective search strategy for a particle swarm optimization (PSO) algorithm that enhances the ability of the algorithm for estimating the parameters of complex dynamic biochemical pathways. The proposed algorithm is a new variant of random drift particle swarm optimization (RDPSO), which is used to solve the above mentioned inverse problem and compared with other well known stochastic optimization methods. Two case studies on estimating the parameters of two nonlinear biochemical dynamic models have been taken as benchmarks, under both the noise-free and noisy simulation data scenarios. CONCLUSIONS: The experimental results show that the novel variant of RDPSO algorithm is able to successfully solve the problem and obtain solutions of better quality than other global optimization methods used for finding the solution to the inverse problems in this study

    A study on flexible flow shop and job shop scheduling using meta-heuristic approaches

    Get PDF
    Scheduling aims at allocation of resources to perform a group of tasks over a period of time in such a manner that some performance goals such as flow time, tardiness, lateness, and makespan can be minimized. Today, manufacturers face the challenges in terms of shorter product life cycles, customized products and changing demand pattern of customers. Due to intense competition in the market place, effective scheduling has now become an important issue for the growth and survival of manufacturing firms. To sustain in the current competitive environment, it is essential for the manufacturing firms to improve the schedule based on simultaneous optimization of performance measures such as makespan, flow time and tardiness. Since all the scheduling criteria are important from business operation point of view, it is vital to optimize all the objectives simultaneously instead of a single objective. It is also essentially important for the manufacturing firms to improve the performance of production scheduling systems that can address internal uncertainties such as machine breakdown, tool failure and change in processing times. The schedules must meet the deadline committed to customers because failure to do so may result in a significant loss of goodwill. Often, it is necessary to reschedule an existing plan due to uncertainty event like machine breakdowns. The problem of finding robust schedules (schedule performance does not deteriorate in disruption situation) or flexible schedules (schedules expected to perform well after some degree of modification when uncertain condition is encountered) is of utmost importance for real world applications as they operate in dynamic environments

    A Brief Analysis of Gravitational Search Algorithm (GSA) Publication from 2009 to May 2013

    Get PDF
    Gravitational Search Algorithm was introduced in year 2009. Since its introduction, the academic community shows a great interest on this algorith. This can be seen by the high number of publications with a short span of time. This paper analyses the publication trend of Gravitational Search Algorithm since its introduction until May 2013. The objective of this paper is to give exposure to reader the publication trend in the area of Gravitational Search Algorithm

    Kooperativna evolucija za kvalitetno pružanje usluga u paradigmi Interneta stvari

    Get PDF
    To facilitate the automation process in the Internet of Things, the research issue of distinguishing prospective services out of many “similar” services, and identifying needed services w.r.t the criteria of Quality of Service (QoS), becomes very important. To address this aim, we propose heuristic optimization, as a robust and efficient approach for solving complex real world problems. Accordingly, this paper devises a cooperative evolution approach for service composition under the restrictions of QoS. A series of effective strategies are presented for this problem, which include an enhanced local best first strategy and a global best strategy that introduces perturbations. Simulation traces collected from real measurements are used for evaluating the proposed algorithms under different service composition scales that indicate that the proposed cooperative evolution approach conducts highly efficient search with stability and rapid convergence. The proposed algorithm also makes a well-designed trade-off between the population diversity and the selection pressure when the service compositions occur on a large scale.Kako bi se automatizirali procesi u internetu stvati, nužno je rezlikovati bitne usluge u moru sličnih kao i identificirati potrebne usluge u pogledu kvalitete usluge (QoS). Kako bi doskočili ovome problemu prdlaže se heuristička optimizacija kao robustan i efikasan način rješavajne kompleksnih problema. Nadalje, u članku je predložen postupak kooperativne evolucije za slaganje usluga uz ograničenja u pogledu kvalutete usluge. Predstavljen je niz efektivnih strategija za spomenuti problem uključujući strategije najboljeg prvog i najboljeg globalnog koje unose perturbacije u polazni problem. Simulacijski rezultati kao i stvarni podatci su korišteni u svrhu evaluacije prodloženog algoritma kako bi se osigurala efikasna pretraga uz stabilnost i brzu konvergenciju. Predloženi algoritam tako.er vodi računa o odnosu izme.u različitosti populacije i selekcijskog pritiska kada je potrebno osigurati slaganje usluga na velikoj skali
    corecore