6,742 research outputs found

    On the physical relevance of random walks: an example of random walks on a randomly oriented lattice

    Full text link
    Random walks on general graphs play an important role in the understanding of the general theory of stochastic processes. Beyond their fundamental interest in probability theory, they arise also as simple models of physical systems. A brief survey of the physical relevance of the notion of random walk on both undirected and directed graphs is given followed by the exposition of some recent results on random walks on randomly oriented lattices. It is worth noticing that general undirected graphs are associated with (not necessarily Abelian) groups while directed graphs are associated with (not necessarily Abelian) C∗C^*-algebras. Since quantum mechanics is naturally formulated in terms of C∗C^*-algebras, the study of random walks on directed lattices has been motivated lately by the development of the new field of quantum information and communication

    Thermodynamic formalism for dissipative quantum walks

    Full text link
    We consider the dynamical properties of dissipative continuous-time quantum walks on directed graphs. Using a large-deviation approach we construct a thermodynamic formalism allowing us to define a dynamical order parameter, and to identify transitions between dynamical regimes. For a particular class of dissipative quantum walks we propose a quantum generalization of the the classical PageRank vector, used to rank the importance of nodes in a directed graph. We also provide an example where one can characterize the dynamical transition from an effective classical random walk to a dissipative quantum walk as a thermodynamic crossover between distinct dynamical regimes.Comment: 8 page

    An edge-based matching kernel through discrete-time quantum walks

    Get PDF
    In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel
    • …
    corecore