7,794 research outputs found

    Quantum Algorithms for Weighing Matrices and Quadratic Residues

    Get PDF
    In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the article we consider Paley's construction of Hadamard matrices, which relies on the properties of quadratic characters over finite fields. We design a query problem that uses the Legendre symbol chi (which indicates if an element of a finite field F_q is a quadratic residue or not). It is shown how for a shifted Legendre function f_s(i)=chi(i+s), the unknown s in F_q can be obtained exactly with only two quantum calls to f_s. This is in sharp contrast with the observation that any classical, probabilistic procedure requires more than log(q) + log((1-e)/2) queries to solve the same problem.Comment: 18 pages, no figures, LaTeX2e, uses packages {amssymb,amsmath}; classical upper bounds added, presentation improve

    Exponential Quantum Speed-ups are Generic

    Get PDF
    A central problem in quantum computation is to understand which quantum circuits are useful for exponential speed-ups over classical computation. We address this question in the setting of query complexity and show that for almost any sufficiently long quantum circuit one can construct a black-box problem which is solved by the circuit with a constant number of quantum queries, but which requires exponentially many classical queries, even if the classical machine has the ability to postselect. We prove the result in two steps. In the first, we show that almost any element of an approximate unitary 3-design is useful to solve a certain black-box problem efficiently. The problem is based on a recent oracle construction of Aaronson and gives an exponential separation between quantum and classical bounded-error with postselection query complexities. In the second step, which may be of independent interest, we prove that linear-sized random quantum circuits give an approximate unitary 3-design. The key ingredient in the proof is a technique from quantum many-body theory to lower bound the spectral gap of local quantum Hamiltonians.Comment: 24 pages. v2 minor correction

    Quantum Oracle Interrogation: Getting all information for almost half the price

    Get PDF
    Consider a quantum computer in combination with a binary oracle of domain size N. It is shown how N/2+sqrt(N) calls to the oracle are sufficient to guess the whole content of the oracle (being an N bit string) with probability greater than 95%. This contrasts the power of classical computers which would require N calls to achieve the same task. From this result it follows that any function with the N bits of the oracle as input can be calculated using N/2+sqrt(N) queries if we allow a small probability of error. It is also shown that this error probability can be made arbitrary small by using N/2+O(sqrt(N)) oracle queries. In the second part of the article `approximate interrogation' is considered. This is when only a certain fraction of the N oracle bits are requested. Also for this scenario does the quantum algorithm outperform the classical protocols. An example is given where a quantum procedure with N/10 queries returns a string of which 80% of the bits are correct. Any classical protocol would need 6N/10 queries to establish such a correctness ratio.Comment: 11 pages LaTeX2e, 1 postscript figure; error analysis added; new section on approximate interrogation adde

    Average-Case Quantum Query Complexity

    Get PDF
    We compare classical and quantum query complexities of total Boolean functions. It is known that for worst-case complexity, the gap between quantum and classical can be at most polynomial. We show that for average-case complexity under the uniform distribution, quantum algorithms can be exponentially faster than classical algorithms. Under non-uniform distributions the gap can even be super-exponential. We also prove some general bounds for average-case complexity and show that the average-case quantum complexity of MAJORITY under the uniform distribution is nearly quadratically better than the classical complexity.Comment: 14 pages, LaTeX. Some parts rewritten. This version to appear in the Journal of Physics
    corecore