8,028 research outputs found

    Quantum repeated games revisited

    Full text link
    We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games

    Parrondo games as lattice gas automata

    Get PDF
    Parrondo games are coin flipping games with the surprising property that alternating plays of two losing games can produce a winning game. We show that this phenomenon can be modelled by probabilistic lattice gas automata. Furthermore, motivated by the recent introduction of quantum coin flipping games, we show that quantum lattice gas automata provide an interesting definition for quantum Parrondo games.Comment: 12 pages, plain TeX, 10 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); for related work see http://math.ucsd.edu/~dmeyer/research.htm

    Quantum games and quantum algorithms

    Get PDF
    A quantum algorithm for an oracle problem can be understood as a quantum strategy for a player in a two-player zero-sum game in which the other player is constrained to play classically. I formalize this correspondence and give examples of games (and hence oracle problems) for which the quantum player can do better than would be possible classically. The most remarkable example is the Bernstein-Vazirani quantum search algorithm which I show creates no entanglement at any timestep.Comment: 10 pages, plain TeX; to appear in the AMS Contemporary Mathematics volume: Quantum Computation and Quantum Information Science; revised remarks about other quantum games formalisms; for related work see http://math.ucsd.edu/~dmeyer/research.htm

    Static Quantum Games Revisited

    Full text link
    The so called \emph{quantum game theory} has recently been proclaimed as one of the new branches in the development of both quantum information theory and game theory. However, the notion of a quantum game itself has never been strictly defined, which has led to a lot of conceptual confusion among different authors. In this paper we introduce a new conceptual framework of a \emph{scenario} and an \emph{implementation} of a game. It is shown that the procedures of "quantization" of games proposed in the literature lead in fact to several different games which can be defined within the same scenario, but apart from this they may have nothing in common with the original game. Within the framework we put forward, a lot of conceptual misunderstandings that have arisen around "quantum games" can be stated clearly and resolved uniquely. In particular, the proclaimed essential role of entanglement in several static "quantum games", and their connection with Bell inequalities, is disproved

    Doves and hawks in economics revisited. An evolutionary quantum game theory-based analysis of financial crises

    Get PDF
    The last financial and economic crisis demonstrated the dysfunctional long-term effects of aggressive behaviour in financial markets. Yet, evolutionary game theory predicts that under the condition of strategic dependence a certain degree of aggressive behaviour remains within a given population of agents. However, as the consequences of the financial crisis exhibit, it would be desirable to change the 'rules of the game' in a way that prevents the occurrence of any aggressive behaviour and thereby also the danger of market crashes. The paper picks up this aspect. Through the extension of the in literature well-known Hawk-Dove game by a quantum approach, we can show that dependent on entanglement, also evolutionary stable strategies can emerge, which are not predicted by classical evolutionary game theory and where the total economic population uses a non aggressive quantum strategy

    Analyzing three-player quantum games in an EPR type setup

    Get PDF
    We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure
    • …
    corecore