20,462 research outputs found

    Quantum Robot: Structure, Algorithms and Applications

    Full text link
    A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quantum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum reinforcement learning are presented for quantum robot. The theoretic results show that quantum robot can reduce the complexity of O(N^2) in traditional robot to O(N^(3/2)) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table

    Basic protocols in quantum reinforcement learning with superconducting circuits

    Get PDF
    Superconducting circuit technologies have recently achieved quantum protocols involving closed feedback loops. Quantum artificial intelligence and quantum machine learning are emerging fields inside quantum technologies which may enable quantum devices to acquire information from the outer world and improve themselves via a learning process. Here we propose the implementation of basic protocols in quantum reinforcement learning, with superconducting circuits employing feedback-loop control. We introduce diverse scenarios for proof-of-principle experiments with state-of-the-art superconducting circuit technologies and analyze their feasibility in presence of imperfections. The field of quantum artificial intelligence implemented with superconducting circuits paves the way for enhanced quantum control and quantum computation protocols.Comment: Published versio

    A Survey on Quantum Reinforcement Learning

    Full text link
    Quantum reinforcement learning is an emerging field at the intersection of quantum computing and machine learning. While we intend to provide a broad overview of the literature on quantum reinforcement learning (our interpretation of this term will be clarified below), we put particular emphasis on recent developments. With a focus on already available noisy intermediate-scale quantum devices, these include variational quantum circuits acting as function approximators in an otherwise classical reinforcement learning setting. In addition, we survey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some of which come with a provable quantum advantage. We provide both a birds-eye-view of the field, as well as summaries and reviews for selected parts of the literature.Comment: 62 pages, 16 figure

    Quantum Policy Gradient Algorithms

    Get PDF
    Understanding the power and limitations of quantum access to data in machine learning tasks is primordial to assess the potential of quantum computing in artificial intelligence. Previous works have already shown that speed-ups in learning are possible when given quantum access to reinforcement learning environments. Yet, the applicability of quantum algorithms in this setting remains very limited, notably in environments with large state and action spaces. In this work, we design quantum algorithms to train state-of-the-art reinforcement learning policies by exploiting quantum interactions with an environment. However, these algorithms only offer full quadratic speed-ups in sample complexity over their classical analogs when the trained policies satisfy some regularity conditions. Interestingly, we find that reinforcement learning policies derived from parametrized quantum circuits are well-behaved with respect to these conditions, which showcases the benefit of a fully-quantum reinforcement learning framework

    Coherent Transport of Quantum States by Deep Reinforcement Learning

    Get PDF
    Some problems in physics can be handled only after a suitable \textit{ansatz }solution has been guessed. Such method is therefore resilient to generalization, resulting of limited scope. The coherent transport by adiabatic passage of a quantum state through an array of semiconductor quantum dots provides a par excellence example of such approach, where it is necessary to introduce its so called counter-intuitive control gate ansatz pulse sequence. Instead, deep reinforcement learning technique has proven to be able to solve very complex sequential decision-making problems involving competition between short-term and long-term rewards, despite a lack of prior knowledge. We show that in the above problem deep reinforcement learning discovers control sequences outperforming the \textit{ansatz} counter-intuitive sequence. Even more interesting, it discovers novel strategies when realistic disturbances affect the ideal system, with better speed and fidelity when energy detuning between the ground states of quantum dots or dephasing are added to the master equation, also mitigating the effects of losses. This method enables online update of realistic systems as the policy convergence is boosted by exploiting the prior knowledge when available. Deep reinforcement learning proves effective to control dynamics of quantum states, and more generally it applies whenever an ansatz solution is unknown or insufficient to effectively treat the problem.Comment: 5 figure
    • …
    corecore