2,183 research outputs found

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    The geometry of quantum learning

    Full text link
    Concept learning provides a natural framework in which to place the problems solved by the quantum algorithms of Bernstein-Vazirani and Grover. By combining the tools used in these algorithms--quantum fast transforms and amplitude amplification--with a novel (in this context) tool--a solution method for geometrical optimization problems--we derive a general technique for quantum concept learning. We name this technique "Amplified Impatient Learning" and apply it to construct quantum algorithms solving two new problems: BATTLESHIP and MAJORITY, more efficiently than is possible classically.Comment: 20 pages, plain TeX with amssym.tex, related work at http://www.math.uga.edu/~hunziker/ and http://math.ucsd.edu/~dmeyer

    Quantum algorithms for testing properties of distributions

    Get PDF
    Suppose one has access to oracles generating samples from two unknown probability distributions P and Q on some N-element set. How many samples does one need to test whether the two distributions are close or far from each other in the L_1-norm ? This and related questions have been extensively studied during the last years in the field of property testing. In the present paper we study quantum algorithms for testing properties of distributions. It is shown that the L_1-distance between P and Q can be estimated with a constant precision using approximately N^{1/2} queries in the quantum settings, whereas classical computers need \Omega(N) queries. We also describe quantum algorithms for testing Uniformity and Orthogonality with query complexity O(N^{1/3}). The classical query complexity of these problems is known to be \Omega(N^{1/2}).Comment: 20 page

    A subexponential-time quantum algorithm for the dihedral hidden subgroup problem

    Full text link
    We present a quantum algorithm for the dihedral hidden subgroup problem with time and query complexity O(exp(ClogN))O(\exp(C\sqrt{\log N})). In this problem an oracle computes a function ff on the dihedral group DND_N which is invariant under a hidden reflection in DND_N. By contrast the classical query complexity of DHSP is O(N)O(\sqrt{N}). The algorithm also applies to the hidden shift problem for an arbitrary finitely generated abelian group. The algorithm begins with the quantum character transform on the group, just as for other hidden subgroup problems. Then it tensors irreducible representations of DND_N and extracts summands to obtain target representations. Finally, state tomography on the target representations reveals the hidden subgroup.Comment: 11 pages. Revised in response to referee reports. Early sections are more accessible; expanded section on other hidden subgroup problem

    Symmetry-assisted adversaries for quantum state generation

    Full text link
    We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum state generation might be a route to tackle the {\sc Graph Isomorphism} problem. We show that for the related problem of {\sc Index Erasure} our method leads to a lower bound of Ω(N)\Omega(\sqrt N) which matches an upper bound obtained via reduction to quantum search on NN elements. This closes an open problem first raised by Shi [FOCS'02]. Our approach is based on two ideas: (i) on the one hand we generalize the known additive and multiplicative adversary methods to the case of quantum state generation, (ii) on the other hand we show how the symmetries of the underlying problem can be leveraged for the design of optimal adversary matrices and dramatically simplify the computation of adversary bounds. Taken together, these two ideas give the new result for {\sc Index Erasure} by using the representation theory of the symmetric group. Also, the method can lead to lower bounds even for small success probability, contrary to the standard adversary method. Furthermore, we answer an open question due to \v{S}palek [CCC'08] by showing that the multiplicative version of the adversary method is stronger than the additive one for any problem. Finally, we prove that the multiplicative bound satisfies a strong direct product theorem, extending a result by \v{S}palek to quantum state generation problems.Comment: 35 pages, 5 figure
    corecore