908 research outputs found

    A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states

    Full text link
    We prove that universal quantum computation is possible using only (i) the physically natural measurement on two qubits which distinguishes the singlet from the triplet subspace, and (ii) qubits prepared in almost any three different (potentially highly mixed) states. In some sense this measurement is a `more universal' dynamical element than a universal 2-qubit unitary gate, since the latter must be supplemented by measurement. Because of the rotational invariance of the measurement used, our scheme is robust to collective decoherence in a manner very different to previous proposals - in effect it is only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous middle name [12

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher
    corecore