967 research outputs found

    Quantum Capacities for Entanglement Networks

    Full text link
    We discuss quantum capacities for two types of entanglement networks: Q\mathcal{Q} for the quantum repeater network with free classical communication, and R\mathcal{R} for the tensor network as the rank of the linear operation represented by the tensor network. We find that Q\mathcal{Q} always equals R\mathcal{R} in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities Q1\mathcal{Q}_1 and R1\mathcal{R}_1 are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that R1\mathcal{R}_1 is a natural upper bound of Q1\mathcal{Q}_1. We analyze the possible gap between R1\mathcal{R}_1 and Q1\mathcal{Q}_1 for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network

    Quantum network coding for quantum repeaters

    Full text link
    This paper considers quantum network coding, which is a recent technique that enables quantum information to be sent on complex networks at higher rates than by using straightforward routing strategies. Kobayashi et al. have recently showed the potential of this technique by demonstrating how any classical network coding protocol gives rise to a quantum network coding protocol. They nevertheless primarily focused on an abstract model, in which quantum resource such as quantum registers can be freely introduced at each node. In this work, we present a protocol for quantum network coding under weaker (and more practical) assumptions: our new protocol works even for quantum networks where adjacent nodes initially share one EPR-pair but cannot add any quantum registers or send any quantum information. A typically example of networks satisfying this assumption is {\emph{quantum repeater networks}}, which are promising candidates for the implementation of large scale quantum networks. Our results thus show, for the first time, that quantum network coding techniques can increase the transmission rate in such quantum networks as well.Comment: 9 pages, 11figure

    Topology Adaption for the Quantum Internet

    Full text link
    In the quantum repeater networks of the quantum Internet, the varying stability of entangled quantum links makes dynamic topology adaption an emerging issue. Here we define an efficient topology adaption method for quantum repeater networks. The model assumes the random failures of entangled links and several parallel demands from legal users. The shortest path defines a set of entangled links for which the probability of stability is above a critical threshold. The scheme is utilized in a base-graph of the overlay quantum network to provide an efficient shortest path selection for the demands of all users of the network. We study the problem of entanglement assignment in a quantum repeater network, prove its computational complexity, and show an optimization procedure. The results are particularly convenient for future quantum networking, quantum-Internet, and experimental long-distance quantum communications.Comment: 17 pages, Journal-ref: Quant. Inf. Proc. (2018

    Assisted Entanglement Distillation

    Full text link
    Motivated by the problem of designing quantum repeaters, we study entanglement distillation between two parties, Alice and Bob, starting from a mixed state and with the help of "repeater" stations. To treat the case of a single repeater, we extend the notion of entanglement of assistance to arbitrary mixed tripartite states and exhibit a protocol, based on a random coding strategy, for extracting pure entanglement. The rates achievable by this protocol formally resemble those achievable if the repeater station could merge its state to one of Alice and Bob even when such merging is impossible. This rate is provably better than the hashing bound for sufficiently pure tripartite states. We also compare our assisted distillation protocol to a hierarchical strategy consisting of entanglement distillation followed by entanglement swapping. We demonstrate by the use of a simple example that our random measurement strategy outperforms hierarchical distillation strategies when the individual helper stations' states fail to individually factorize into portions associated specifically with Alice and Bob. Finally, we use these results to find achievable rates for the more general scenario, where many spatially separated repeaters help two recipients distill entanglement.Comment: 25 pages, 4 figure
    • …
    corecore