1,954 research outputs found

    Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources

    Get PDF
    In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements, where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that exploits measurement statistics from mismatched-basis cases, and prove that incorporating these statistics enables uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution protocol and the Bennett-Brassard 1984 protocol, a case which is otherwise impossible.Comment: Part of this article contains a significant improvement over arXiv:1309.381

    Control power in perfect controlled teleportation via partially entangled channels

    Get PDF
    We analyze and evaluate perfect controlled teleportation via three-qubit entangled channels from the point of view of the controller. The key idea in controlled teleportation is that the teleportation is performed only with the participation of the controller. We calculate a quantitative measure of the controller's power and establish a lower bound on the control power required for controlled teleportation. We show that the maximally entangled GHZ state is a suitable channel for controlled teleportation of arbitrary single qubits - the controller's power meets the bound and the teleportation fidelity without the controller's permission is no better than the fidelity of a classical channel. We also construct partially entangled channels that exceed the bound for controlled teleportation of a restricted set of states called the equatorial states. We calculate the minimum entanglement required in these channels to exceed the bound. Moreover, we find that in these restricted controlled teleportation schemes, the partially entangled channels can outperform maximally entangled channels with respect to the controller's power. Our results provide a new perspective on controlled teleportation schemes and are of practical interest since we propose useful partially entangled channels.Comment: 5 page, Physical Review A 201

    Tomography increases key rates of quantum-key-distribution protocols

    Full text link
    We construct a practically implementable classical processing for the BB84 protocol and the six-state protocol that fully utilizes the accurate channel estimation method, which is also known as the quantum tomography. Our proposed processing yields at least as high key rate as the standard processing by Shor and Preskill. We show two examples of quantum channels over which the key rate of our proposed processing is strictly higher than the standard processing. In the second example, the BB84 protocol with our proposed processing yields a positive key rate even though the so-called error rate is higher than the 25% limit.Comment: 13 pages, 1 figure, REVTeX4. To be published in PRA. Version 2 adds many references, a closed form key rate formula for unital channels, and a procedure for the maximum likelihood channel estimatio

    Key-Rate Bound of a Semi-Quantum Protocol Using an Entropic Uncertainty Relation

    Full text link
    In this paper we present a new proof technique for semi-quantum key distribution protocols which makes use of a quantum entropic uncertainty relation to bound an adversary's information. Our new technique provides a more optimistic key-rate bound than previous work relying only on noise statistics (as opposed to using additional mismatched measurements which increase the noise tolerance of this protocol, but at the cost of requiring four times the amount of measurement data). Our new technique may hold application in the proof of security of other semi-quantum protocols or protocols relying on two-way quantum communication.Comment: Comments welcom
    • …
    corecore