15,432 research outputs found

    Photonic quantum state transfer between a cold atomic gas and a crystal

    Full text link
    Interfacing fundamentally different quantum systems is key to build future hybrid quantum networks. Such heterogeneous networks offer superior capabilities compared to their homogeneous counterparts as they merge individual advantages of disparate quantum nodes in a single network architecture. However, only very few investigations on optical hybrid-interconnections have been carried out due to the high fundamental and technological challenges, which involve e.g. wavelength and bandwidth matching of the interfacing photons. Here we report the first optical quantum interconnection between two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be faithfully transferred between a cold atomic ensemble and a rare-earth doped crystal via a single photon at telecommunication wavelength, using cascaded quantum frequency conversion. We first demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred onto the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85%85\%. Our results open prospects to optically connect quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Visual assessment of multi-photon interference

    Get PDF
    Classical machine learning algorithms can provide insights on high-dimensional processes that are hardly accessible with conventional approaches. As a notable example, t-distributed Stochastic Neighbor Embedding (t-SNE) represents the state of the art for visualization of data sets of large dimensionality. An interesting question is then if this algorithm can provide useful information also in quantum experiments with very large Hilbert spaces. Leveraging these considerations, in this work we apply t-SNE to probe the spatial distribution of n-photon events in m-dimensional Hilbert spaces, showing that its findings can be beneficial for validating genuine quantum interference in boson sampling experiments. In particular, we find that nonlinear dimensionality reduction is capable to capture distinctive features in the spatial distribution of data related to multi-photon states with different evolutions. We envisage that this approach will inspire further theoretical investigations, for instance for a reliable assessment of quantum computational advantage

    Conditional control of the quantum states of remote atomic memories for quantum networking

    Get PDF
    Quantum networks hold the promise for revolutionary advances in information processing with quantum resources distributed over remote locations via quantum-repeater architectures. Quantum networks are composed of nodes for storing and processing quantum states, and of channels for transmitting states between them. The scalability of such networks relies critically on the ability to perform conditional operations on states stored in separated quantum memories. Here we report the first implementation of such conditional control of two atomic memories, located in distinct apparatuses, which results in a 28-fold increase of the probability of simultaneously obtaining a pair of single photons, relative to the case without conditional control. As a first application, we demonstrate a high degree of indistinguishability for remotely generated single photons by the observation of destructive interference of their wavepackets. Our results demonstrate experimentally a basic principle for enabling scalable quantum networks, with applications as well to linear optics quantum computation.Comment: 10 pages, 8 figures; Minor corrections. References updated. Published at Nature Physics 2, Advanced Online Publication of 10/29 (2006

    Purification of Single-photon Entanglement

    Full text link
    Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. Besides its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters.Comment: Main article: 5 pages, 4 figure

    Simulation of Quantum Computation: A deterministic event-based approach

    Get PDF
    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and for seven-qubit quantum networks that implement Shor's numbering factoring algorithm.Comment: J. Comp. Theor. Nanoscience (in press); http://www.compphys.net/dl

    Simple atomic quantum memory suitable for semiconductor quantum dot single photons

    Get PDF
    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf\delta f = 0.66~GHz the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For 50 ns storage time we measure ηe2e50ns=3.4(3)%\eta_{\textrm{e2e}}^{\textrm{50ns}} = 3.4(3)\% \emph{end-to-end efficiency} of the fiber-coupled memory, with an \emph{total intrinsic efficiency} ηint=17(3)%\eta_{\textrm{int}} = 17(3)\%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe2e35%\eta_{\textrm{e2e}} \approx 35\%; beyond that increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional readout noise level of 91039\cdot 10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27(4)\mu_{1}=0.27(4) photons the signal to noise level would be unity
    corecore